ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of the adiabatic model of quantum computation requires efficient encoding of the solution to computational problems into the lowest eigenstate of a Hamiltonian that supports universal adiabatic quantum computation. Experimental systems ar e typically limited to restricted forms of 2-body interactions. Therefore, universal adiabatic quantum computation requires a method for approximating quantum many-body Hamiltonians up to arbitrary spectral error using at most 2-body interactions. Hamiltonian gadgets, introduced around a decade ago, offer the only current means to address this requirement. Although the applications of Hamiltonian gadgets have steadily grown since their introduction, little progress has been made in overcoming the limitations of the gadgets themselves. In this experimentally motivated theoretical study, we introduce several gadgets which require significantly more realistic control parameters than similar gadgets in the literature. We employ analytical techniques which result in a reduction of the resource scaling as a function of spectral error for the commonly used subdivision, 3- to 2-body and $k$-body gadgets. Accordingly, our improvements reduce the resource requirements of all proofs and experimental proposals making use of these common gadgets. Next, we numerically optimize these new gadgets to illustrate the tightness of our analytical bounds. Finally, we introduce a new gadget that simulates a $YY$ interaction term using Hamiltonians containing only ${X,Z,XX,ZZ}$ terms. Apart from possible implications in a theoretical context, this work could also be useful for a first experimental implementation of these key building blocks by requiring less control precision without introducing extra ancillary qubits.
In this theoretical study, we analyze quantum walks on complex networks, which model network-based processes ranging from quantum computing to biology and even sociology. Specifically, we analytically relate the average long time probability distribu tion for the location of a unitary quantum walker to that of a corresponding classical walker. The distribution of the classical walker is proportional to the distribution of degrees, which measures the connectivity of the network nodes and underlies many methods for analyzing classical networks including website ranking. The quantum distribution becomes exactly equal to the classical distribution when the walk has zero energy and at higher energies the difference, the so-called quantumness, is bounded by the energy of the initial state. We give an example for which the quantumness equals a Renyi entropy of the normalized weighted degrees, guiding us to regimes for which the classical degree-dependent result is recovered and others for which quantum effects dominate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا