ترغب بنشر مسار تعليمي؟ اضغط هنا

The fragility of deep neural networks to adversarially-chosen inputs has motivated the need to revisit deep learning algorithms. Including adversarial examples during training is a popular defense mechanism against adversarial attacks. This mechanism can be formulated as a min-max optimization problem, where the adversary seeks to maximize the loss function using an iterative first-order algorithm while the learner attempts to minimize it. However, finding adversarial examples in this way causes excessive computational overhead during training. By interpreting the min-max problem as an optimal control problem, it has recently been shown that one can exploit the compositional structure of neural networks in the optimization problem to improve the training time significantly. In this paper, we provide the first convergence analysis of this adversarial training algorithm by combining techniques from robust optimal control and inexact oracle methods in optimization. Our analysis sheds light on how the hyperparameters of the algorithm affect the its stability and convergence. We support our insights with experiments on a robust classification problem.
Douglas-Rachford splitting and its equivalent dual formulation ADMM are widely used iterative methods in composite optimization problems arising in control and machine learning applications. The performance of these algorithms depends on the choice o f step size parameters, for which the optimal values are known in some specific cases, and otherwise are set heuristically. We provide a new unified method of convergence analysis and parameter selection by interpreting the algorithm as a linear dynamical system with nonlinear feedback. This approach allows us to derive a dimensionally independent matrix inequality whose feasibility is sufficient for the algorithm to converge at a specified rate. By analyzing this inequality, we are able to give performance guarantees and parameter settings of the algorithm under a variety of assumptions regarding the convexity and smoothness of the objective function. In particular, our framework enables us to obtain a new and simple proof of the O(1/k) convergence rate of the algorithm when the objective function is not strongly convex.
We consider a distributed optimization problem over a network of agents aiming to minimize a global objective function that is the sum of local convex and composite cost functions. To this end, we propose a distributed Chebyshev-accelerated primal-du al algorithm to achieve faster ergodic convergence rates. In standard distributed primal-dual algorithms, the speed of convergence towards a global optimum (i.e., a saddle point in the corresponding Lagrangian function) is directly influenced by the eigenvalues of the Laplacian matrix representing the communication graph. In this paper, we use Chebyshev matrix polynomials to generate gossip matrices whose spectral properties result in faster convergence speeds, while allowing for a fully distributed implementation. As a result, the proposed algorithm requires fewer gradient updates at the cost of additional rounds of communications between agents. We illustrate the performance of the proposed algorithm in a distributed signal recovery problem. Our simulations show how the use of Chebyshev matrix polynomials can be used to improve the convergence speed of a primal-dual algorithm over communication networks, especially in networks with poor spectral properties, by trading local computation by communication rounds.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا