ترغب بنشر مسار تعليمي؟ اضغط هنا

In the present work we study actions of various groups generated by involutions on the category $mathscr O^{int}_q(mathfrak g)$ of integrable highest weight $U_q(mathfrak g)$-modules and their crystal bases for any symmetrizable Kac-Moody algebra $ma thfrak g$. The most notable of them are the cactus group and (yet conjectural) Weyl group action on any highest weight integrable module and its lower and upper crystal bases. Surprisingly, some generators of cactus groups are anti-involutions of the Gelfand-Kirillov model for $mathscr O^{int}_q(mathfrak g)$ closely related to the remarkable quantum twists discovered by Kimura and Oya.
The goal of this work is to provide an elementary construction of the canonical basis $mathbf B(w)$ in each quantum Schubert cell~$U_q(w)$ and to establish its invariance under modified Lusztigs symmetries. To that effect, we obtain a direct characte rization of the upper global basis $mathbf B^{up}$ in terms of a suitable bilinear form and show that $mathbf B(w)$ is contained in $mathbf B^{up}$ and its large part is preserved by modified Lusztigs symmetries.
We obtain Koszul-type dualities for categories of graded modules over a graded associative algebra which can be realized as the semidirect product of a bialgebra coinciding with its degree zero part and a graded module algebra for the latter. In part icular, this applies to graded representations of the universal enveloping algebra of the Takiff Lie algebra (or the truncated current algebra) and its (super)analogues, and also to semidirect products of quantum groups with braided symmetric and exterior module algebras in case the latter are flat deformations of classical ones.
We generalize the decomposition of $U_q(mathfrak g)$ introduced by A. Joseph and relate it, for $mathfrak g$ semisimple, to the celebrated computation of central elements due to V. Drinfeld. In that case we construct a natural basis in the center of $U_q(mathfrak g)$ whose elements behave as Schur polynomials and thus explicitly identify the center with the ring of symmetric functions.
The goal of this note is to study quantum clusters in which cluster variables (not coefficients) commute which each other. It turns out that this property is preserved by mutations. Remarkably, this is equivalent to the celebrated sign coherence conj ecture recently proved by M. Gross, P. Hacking, S. Keel and M. Kontsevich
We introduce a new class of bases for quantized universal enveloping algebras $U_q(mathfrak g)$ and other doubles attached to semisimple and Kac-Moody Lie algebras. These bases contain dual canonical bases of upper and lower halves of $U_q(mathfrak g )$ and are invariant under many symmetries including all Lusztigs symmetries if $mathfrak g$ is semisimple. It also turns out that a part of a double canonical basis of $U_q(mathfrak g)$ spans its center.
In the present paper we show that Hall algebras of finitary exact categories behave like quantum groups in the sense that they are generated by indecomposable objects. Moreover, for a large class of such categories, Hall algebras are generated by the ir primitive elements, with respect to the natural comultiplication, even for non-hereditary categories. Finally, we introduce certain primitively generated subalgebras of Hall algebras and conjecture an analogue of Lie correspondence for those finitary categories.
The goal of this paper is to construct quantum analogues of Chevalley groups inside completions of quantum groups or, more precisely, inside completions of Hall algebras of finitary categories. In particular, we obtain pentagonal and other identities in the quantum Chevalley groups which generalize their classical counterparts and explain Faddeev-Volkov quantum dilogarithmic identities and their recent generalizations due to Keller
We prove that the specialization to q=1 of a Kirillov-Reshetikhin module for an untwisted quantum affine algebra of classical type is projective in a suitable category. This yields a uniform character formula for the Kirillov-Reshetikhin modules. We conjecture that these results holds for specializations of minimal affinization with some restriction on the corresponding highest weight. We discuss the connection with the conjecture of Nakai and Nakanishi on q-characters of minimal affinizations. We establish this conjecture in some special cases. This also leads us to conjecture an alternating sum formula for Jacobi-Trudi determinants.
In the present paper we introduce a quantum analogue of the classical folding of a simply-laced Lie algebra g to the non-simply-laced algebra g^sigma along a Dynkin diagram automorphism sigma of g For each quantum folding we replace g^sigma by its La nglands dual g^sigma^v and construct a nilpotent Lie algebra n which interpolates between the nilpotnent parts of g and (g^sigma)^v, together with its quantized enveloping algebra U_q(n) and a Poisson structure on S(n). Remarkably, for the pair (g, (g^sigma)^v)=(so_{2n+2},sp_{2n}), the algebra U_q(n) admits an action of the Artin braid group Br_n and contains a new algebra of quantum n x n matrices with an adjoint action of U_q(sl_n), which generalizes the algebras constructed by K. Goodearl and M. Yakimov in [12]. The hardest case of quantum folding is, quite expectably, the pair (so_8,G_2) for which the PBW presentation of U_q(n) and the corresponding Poisson bracket on S(n) contain more than 700 terms each.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا