ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate that nearly critical quantum magnetic fluctuations in strongly correlated electron systems can change the Fermi surface topology and also lead to spin charge separation (SCS) in two dimensions. To demonstrate these effects we consider a small number of holes injected into the bilayer antiferromagnet. The system has a quantum critical point (QCP) which separates magnetically ordered and disordered phases. We demonstrate that in the physically interesting regime there is a magnetically driven Lifshitz point (LP) inside the magnetically disordered phase. At the LP the topology of the hole Fermi surface is changed. We also demonstrate that in this regime the hole spin and charge necessarily separate when approaching the QCP. The considered model sheds light on generic problems concerning the physics of the cuprates.
We present a detailed description of the dynamics of the magnetic modes in the recently discovered superconducting pnictides using reliable self-consistent spin-wave theory and series expansion. Contrary to linear spin-wave theory, no gapless mode oc curs at the Neel wave vector. We discuss the scenario that the static magnetic moment is strongly reduced by magnetic fluctuations arising from the vicinity to a quantum phase transition. Smoking gun experiments to verify this scenario are proposed and possible results are predicted. Intriguingly in this scenario, the structural transition at finite temperature would be driven by an Ising transition in directional degrees of freedom.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا