ترغب بنشر مسار تعليمي؟ اضغط هنا

176 - M. Beard 2010
Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 MeV to 18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence S(E) by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments.
We report on efforts to identify large samples of very and extremely metal-poor stars based on medium-resolution spectroscopy and ugriz photometry obtained during the course of the Sloan Digital Sky Survey (SDSS), and its extension, SDSS-II, which in cludes the program SEGUE: Sloan Extension for Galactic Understanding and Exploration. To date, over 8000 stars with [Fe/H] <= -2.0 and effective temperatures in the range 4500K < T_eff < 7000K have been found, with the expected numbers in this temperature range to be well over 10,000 once SEGUE is completed. The numbers roughly double when one includes warmer blue stragglers and Blue Horizontal-Branch (BHB) stars in these counts. We show the observed low-metallicity tails of the Metallicity Distribution Functions for the cooler SDSS/SEGUE stars obtained thus far. We also comment on the confirmation of an inner/outer halo dichotomy in the Milky Way, and on how this realization may be used to direct searches for even more metal-poor stars in the near future.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا