ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Yang and Yangs particle-hole description, we present a thorough derivation of the thermodynamic Bethe ansatz equations for a general $SU(kappa)$ fermionic system in one-dimension for both the repulsive and attractive regimes under the presence of an external magnetic field. These equations are derived from Sutherlands Bethe ansatz equations by using the spin-string hypothesis. The Bethe ansatz root patterns for the attractive case are discussed in detail. The relationship between the various phases of the magnetic phase diagrams and the external magnetic fields is given for the attractive case. We also give a quantitative description of the ground state energies for both strongly repulsive and strongly attractive regimes.
We investigate magnetism and quantum phase transitions in a one-dimensional system of integrable spin-1 bosons with strongly repulsive density-density interaction and antiferromagnetic spin exchange interaction via the thermodynamic Bethe ansatz meth od. At zero temperature, the system exhibits three quantum phases: (i) a singlet phase of boson pairs when the external magnetic field $H$ is less than the lower critical field $H_{c1}$; (ii) a ferromagnetic phase of atoms in the hyperfine state $|F=1, m_{F}=1>$ when the external magnetic field exceeds the upper critical field $H_{c2}$; and (iii) a mixed phase of singlet pairs and unpaired atoms in the intermediate region $H_{c1}<H<H_{c2}$. At finite temperatures, the spin fluctuations affect the thermodynamics of the model through coupling the spin bound states to the dressed energy for the unpaired $m_{F}=1$ bosons. However, such spin dynamics is suppressed by a sufficiently strong external field at low temperatures. Thus the singlet pairs and unpaired bosons may form a two-component Luttinger liquid in the strong coupling regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا