ترغب بنشر مسار تعليمي؟ اضغط هنا

It is thought that type Ia supernovae (SNe Ia) are explosions of carbon-oxygen white dwarfs (CO WDs). Two main evolutionary channels are proposed for the WD to reach the critical density required for a thermonuclear explosion: the single degenerate s cenario (SD), in which a CO WD accretes from a non-degenerate companion, and the double degenerate scenario (DD), in which two CO WDs merge. However, it remains difficult to reproduce the observed SN Ia rate with these two scenarios. With a binary population synthesis code we study the main evolutionary channels that lead to SNe Ia and we calculate the SN Ia rates and the associated delay time distributions. We find that the DD channel is the dominant formation channel for the longest delay times. The SD channel with helium-rich donors is the dominant channel at the shortest delay times. Our standard model rate is a factor five lower than the observed rate in galaxy clusters. We investigate the influence of ill-constrained aspects of single- and binary-star evolution and uncertain initial binary distributions on the rate of type Ia SNe. These distributions, as well as uncertainties in both helium star evolution and common envelope evolution, have the greatest influence on our calculated rates. Inefficient common envelope evolution increases the relative number of SD explosions such that for $alpha_{rm ce} = 0.2$ they dominate the SN Ia rate. Our highest rate is a factor three less than the galaxy-cluster SN Ia rate, but compatible with the rate determined in a field-galaxy dominated sample. If we assume unlimited accretion onto WDs, to maximize the number of SD explosions, our rate is compatible with the observed galaxy-cluster rate.
Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, wh ich then leads to a deeper understanding of the underlying physical processes involved. To understand the predictive power of BPS codes, we study the similarities and differences in the predicted populations of four different BPS codes for low- and intermediate-mass binaries. We investigate whether the differences are caused by different assumptions made in the BPS codes or by numerical effects. To simplify the complex problem of comparing BPS codes, we equalise the inherent assumptions as much as possible. We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and their birthrates. Regarding the double WD population, there is a good agreement on which evolutionary channels exist to create double WDs and a rough agreement on the characteristics of the double WD population. Regarding which progenitor systems lead to a single and double WD system and which systems do not, the four codes agree well. Most importantly, we find that for these two populations, the differences in the predictions from the four codes are not due to numerical differences, but because of different inherent assumptions. We identify critical assumptions for BPS studies that need to be studied in more detail.
In the single degenerate scenario for Type Ia supernova (SNeIa), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, whi ch can increase the critical mass, $M_{crit}$, needed for explosion. When $M_{crit}$ is higher than the maximum mass achieved by the WD, the WD must spin down before it can explode. This introduces a delay between the time at which the WD has completed its epoch of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WDs mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin-down model is highly predictive. Prior to explosion, progenitors can be super-$M_{Ch}$ WDs in either wide binaries with WD companions, or else in cataclysmic variables. These systems can be discovered and studied through wide-field surveys. Post explosion, the spin-up/spin-down model predicts a population of fast-moving WDs, low-mass stars, and even brown dwarfs. In addition, the spin-up/spin-down model provides a paradigm which may be able to explain both the similarities and the diversity observed among SNeIa.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا