ترغب بنشر مسار تعليمي؟ اضغط هنا

We observed six fields of the Small Magellanic Cloud (SMC) with the Advanced Camera for Survey on board the Hubble Space Telescope in the F555W and F814W filters. These fields sample regions characterized by very different star and gas densities, and , possibly, by different evolutionary histories. We find that the SMC was already forming stars ~12 Gyr ago, even if the lack of a clear horizontal branch suggests that in the first few billion years the star formation activity was low. Within the uncertainties of our two-band photometry, we find evidence of a radial variation in chemical enrichment, with the SMC outskirts characterized by lower metallicity than the central zones. From our CMDs we also infer that the SMC formed stars over a long interval of time until ~2-3 Gyr ago. After a period of modest activity, star formation increased again in the recent past, especially in the bar and the wing of the SMC, where we see an enhancement in the star-formation activity starting from ~500 Myr ago. The inhomogeneous distribution of stars younger than ~100 Myr indicates that recent star formation has mainly developed locally.
As first Paper of a series devoted to study the old stellar population in clusters and fields in the Small Magellanic Cloud, we present deep observations of NGC121 in the F555W and F814W filters, obtained with the Advanced Camera for Surveys on the H ubble Space Telescope. The resulting color-magnitude diagram reaches ~3.5 mag below the main-sequence turn-off; deeper than any previous data. We derive the age of NGC121 using both absolute and relative age-dating methods. Fitting isochrones in the ACS photometric system to the observed ridge line of NGC121, gives ages of 11.8 +- 0.5 Gyr (Teramo), 11.2 +- 0.5 Gyr (Padova) and 10.5 +- 0.5 Gyr (Dartmouth). The cluster ridge line is best approximated by the alpha-enhanced Dartmouth isochrones. Placing our relative ages on an absolute age scale, we find ages of 10.9 +- 0.5 Gyr (from the magnitude difference between the main-sequence turn-off and the horizontal branch) and 11.5 +- 0.5 Gyr (from the absolute magnitude of the horizontal branch), respectively. These five different age determinations are all lower by 2 - 3 Gyr than the ages of the oldest Galactic globular clusters of comparable metallicity. Therefore we confirm the earlier finding that the oldest globular cluster in the Small Magellanic Cloud, NGC121, is a few Gyr younger than its oldest counterparts in the Milky Way and in other nearby dwarf galaxies such as the Large Magellanic Cloud, Fornax, and Sagittarius. If it were accreted into the Galactic halo, NGC121 would resemble the young halo globulars, although it is not as young as the youngest globular clusters associated with the Sagittarius dwarf. The young age of NGC121 could result from delayed cluster formation in the Small Magellanic Cloud or result from the random survival of only one example of an initially small number star clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا