ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - H.L. Yan , J.R. Shi , 2015
We investigated the copper abundances for $64$ late-type stars in the Galactic disk and halo with effective temperatures from $5400$ K to $6700$ K and [Fe/H] from $-1.88$ to $-0.17$. For the first time, the copper abundances are derived using both lo cal thermodynamic equilibrium (LTE) and non-local thermodynamic equilibrium (non-LTE) calculations. High resolution ($R > 40,000$), high signal-to-noise ratio ($S/N > 100$) spectra from the FOCES spectrograph are used. The atmospheric models are calculated based on the MAFAGS opacity sampling code. All the abundances are derived using the spectrum synthesis methods. Our results indicate that the non-LTE effects of copper are important for metal-poor stars, showing a departure of $sim 0.17$ dex at the metallicity $sim -1.5$. We also find that the copper abundances derived from non-LTE calculations are enhanced compared with those from LTE. The enhancements show clear dependence on the metallicity, which gradually increase with decreasing [Fe/H] for our program stars, leading to a flatter distribution of [Cu/Fe] with [Fe/H] than previous work. There is a hint that the thick- and thin-disk stars have different behaviors in [Cu/Fe], and a bending for disk stars may exist.
Aims. The statistical equilibrium of neutral and ionized silicon in the atmospheres of metal-poor stars is discussed. Non-local thermodynamic equilibrium effects are investigated and the silicon abundances in metal-poor stars determined. Methods. We have used high resolution, high signal to noise ratio spectra from the UVES spectragraph at the ESO VLT telescope. Line formation calculations of Si i and Si ii in the atmospheres of metal-poor stars are presented for atomic models of silicon including 174 terms and 1132 line transitions. Recent improved calculations of Si i and Si ii photoionization cross-sections are taken into account, and the influence of the free-free quasi-molecular absorption in the Ly alpha wing is investigated by comparing theoretical and observed fluxes of metal-poor stars. All abundance results are derived from LTE and NLTE statistical equilibrium calculations and spectrum synthesis methods. Results. It is found that the extreme ultraviolet radiation is very important for metal-poor stars, especially for the high temperature, very metal-poor stars. The radiative bound-free cross-sections also play a very important role for these stars. Conclusions. NLTE effects for Si are found to be important for metal-poor stars, in particular for warm metal-poor stars. It is found that these effects depend on the temperature. For warm metal-poor stars, the NLTE abundance correction reaches ~ 0.2 dex relative to standard LTE calculations. Our results indicate that Si is overabundant for metal-poor stars.
38 - J.R. Shi , T. Gehren , K. Butler 2008
The statistical equilibrium of neutral and ionised silicon in the solar photosphere is investigated. Line formation is discussed and the solar silicon abundance determined. High-resolution solar spectra were used to determine solar $log gfepsilon_{rm Si}$ values by comparison with Si line synthesis based on LTE and NLTE level populations. The results will be used in a forthcoming paper for differential abundance analyses of metal-poor stars. A detailed analysis of silicon line spectra leads to setting up realistic model atoms, which are exposed to interactions in plane-parallel solar atmospheric models. The resulting departure coefficients are entered into a line-by-line analysis of the visible and near-infrared solar silicon spectrum. The statistical equilibrium of ion{Si}{i} turns out to depend marginally on bound-free interaction processes, both radiative and collisional. Bound-bound interaction processes do not play a significant role either, except for hydrogen collisions, which have to be chosen adequately for fitting the cores of the near-infrared lines. Except for some near-infrared lines, the NLTE influence on the abundances is weak. Taking the deviations from LTE in silicon into account, it is possible to calculate the ionisation equilibrium from neutral and ionised lines. The solar abundance based on the experimental $f$-values of Garz corrected for the Becker et al.s measurement is $7.52 pm 0.05$. Combined with an extended line sample with selected NIST $f$-values, the solar abundance is $7.52 pm 0.06$, with a nearly perfect ionisation equilibrium of $Deltalogepsilon_odot(ion{Si}{ii}/ion{Si}{i}) = -0.01$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا