ترغب بنشر مسار تعليمي؟ اضغط هنا

The unprecedented sensitivity of the Spitzer Space Telescope has enabled us for the first time to detect a large sample of Blue Compact Dwarf galaxies (BCDs), which are intrinsically faint in the infrared. In the present paper we present a summary of our findings which providing essential information on the presence/absence of the Polycyclic Aromatic Hydrocarbon features in metal-poor environments. In addition, using Spitzer/IRS high-resolution spectroscopy, we study the elemental abundances of neon and sulfur in BCDs and compare with the results from optical studies. Finally, we present an analysis of the mid- and far-infrared to radio correlation in low luminosity low metallicity galaxies.
We study the correlation between the radio, mid-infrared and far-infrared properties for a sample of 28 blue compact dwarf (BCD) and low metallicity star-forming galaxies observed by Spitzer. We find that these sources extend the same far-infrared to radio correlation typical of star forming late type alaxies to lower luminosities. In BCDs, the 24um (or 22um) mid-infrared to radio correlation is similar to starburst galaxies, though there is somewhat larger dispersion in their q_24 parameter compared to their q_FIR. No strong correlations between the q parameter and galaxy metallicity or effective dust temperature have been detected, though there is a hint of decreasing q_24 at low metallicities. The two lowest metallicity dwarfs in our sample, IZw18 and SBS0335-052E, despite their similar chemical abundance, deviate from the average q$_{24}$ ratio in opposite manners, displaying an apparent radio excess and dust excess respectively.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا