ترغب بنشر مسار تعليمي؟ اضغط هنا

The carbon-to-oxygen (C/O) ratio of asymptotic giant branch (AGB) stars constitutes an important index of evolutionary and environment/metallicity factor. We develop a method for mass C/O classification of AGBs in photometric surveys without using pe riods. For this purpose we rely on the slopes in the tracks of individual stars in the colour-magnitude diagram. We demonstrate that our method enables the separation of C-rich and O-rich AGB stars with little confusion. For the Magellanic Clouds we demonstrate that this method works for several photometric surveys and filter combinations. As we rely on no period identification, our results are relatively insensitive to the phase coverage, aliasing, and time-sampling problems that plague period analyses. For a subsample of our stars, we verify our C/O classification against published C/O catalogues. With our method we are able to produce C/O maps of the entire Magellanic Clouds. Our purely photometric method for classification of C- and O-rich AGBs constitutes a method of choice for large, near-infrared photometric surveys. Because our method depends on the slope of colour-magnitude variation but not on magnitude zero point, it remains applicable to objects with unknown distances.
The hot Jupiter HD 209458b was observed during primary transit at 3.6, 4.5, 5.8 and 8.0 microns using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We detail here the procedures we adopted to correct for the systematic trends prese nt in the IRAC data. The light curves were fitted including limb darkening effects and fitted using Markov Chain Monte Carlo and prayer-bead Monte Carlo techniques, finding almost identical results. The final depth measurements obtained by a combined Markov Chain Monte Carlo fit are at 3.6 microns, 1.469 +- 0.013 % and 1.448 +- 0.013 %; at 4.5 microns, 1.478 +- 0.017 % ; at 5.8 microns, 1.549 +- 0.015 % and at 8.0 microns 1.535 +- 0.011 %. Our results clearly indicate the presence of water in the planetary atmosphere. Our broad band photometric measurements with IRAC prevent us from determining the additional presence of other other molecules such as CO, CO2 and methane for which spectroscopy is needed. While water vapour with a mixing ratio of 10^-4-10^-3 combined with thermal profiles retrieved from the day-side may provide a very good fit to our observations, this data set alone is unable to resolve completely the degeneracy between water abundance and atmospheric thermal profile.
A number of microlensing dark-matter surveys have produced tens of millions of light curves of individual background stars. These data provide an unprecedented opportunity for systematic studies of whole classes of variable stars and their host galax ies. We aim to use the EROS-2 survey of the Magellanic Clouds to detect and study the population of beat Cepheids (BCs) in both Clouds. BCs pulsating simultaneously in the first overtone and fundamental modes (FO/F) or in the second and first overtone modes (SO/FO) are of particular interest. Using special software designed to search for periodic variables, we have scanned the EROS-2 data base for variables in the typical period range of Cepheids. Metallicities of FO/F objects were then calculated from linear nonadiabatic convective stellar models. We identify 74 FO/F BCs in the LMC and 41 in the SMC, and 173 and 129 SO/FO pulsators in the LMC and SMC, respectively; 185 of these stars are new discoveries. For nearly all the FO/F objects we determine minimum, mean, and maximum values of the metallicity. The EROS data have expanded the samples of known BCs in the LMC by 31%, in the SMC by 110%. The FO/F objects provide independent measures of metallicities in these galaxies. The mean value of metallicity is 0.0045 in the LMC and 0.0018 in the SMC.
176 - J.P. Beaulieu , E. Kerins , S. Mao 2008
Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and multiple planet systems are not rare. In this White Paper we introduce the basic concepts of the gravitational microlensing technique, summarise the current mode of discovery and outline future steps towards a complete census of planets including Earth-mass planets. In the near-term (over the next 5 years) we advocate a strategy of automated follow-up with existing and upgraded telescopes which will significantly increase the current planet detection efficiency. In the medium 5-10 year term, we envision an international network of wide-field 2m class telescopes to discover Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we strongly advocate a space microlensing telescope which, when combined with Kepler, will provide a complete census of planets down to Earth mass at almost all separations. Such a survey could be undertaken as a science programme on Euclid, a dark energy probe with a wide-field imager which has been proposed to ESAs Cosmic Vision Programme.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا