ترغب بنشر مسار تعليمي؟ اضغط هنا

(abridged) MGRO J2019+37 is an unidentified extended source of VHE gamma-rays originally reported by the Milagro Collaboration as the brightest TeV source in the Cygnus region. Its extended emission could be powered by either a single or several sour ces. The GeV pulsar AGL J2020.5+3653, discovered by AGILE and associated with PSR J2021+3651, could contribute to the emission from MGRO J2019+37, although extrapolation of the GeV spectrum does not explain the detected multi-TeV flux. Our aim is to identify radio and NIR sources in the field of the extended TeV source MGRO J2019+37, and study potential counterparts that could contribute to its emission. We surveyed a region of about 6 square degrees with the Giant Metrewave Radio Telescope (GMRT) at the frequency 610 MHz. We also observed the central square degree of this survey in the NIR Ks-band using the 3.5 m telescope in Calar Alto. Archival X-ray observations of some specific fields are included. VLBI observations of an interesting radio source were performed. We explored possible scenarios to produce the multi-TeV emission from MGRO J2019+37 and studied which of the sources could be the main particle accelerator. We present a catalogue of 362 radio sources detected with the GMRT in the field of MGRO J2019+37, and the results of a cross-correlation of this catalog with one obtained at NIR wavelengths, as well as with available X-ray observations of the region. Some peculiar sources inside the ~1 degree uncertainty region of the TeV emission from MGRO J2019+37 are discussed in detail, including the pulsar PSR J2021+3651 and its pulsar wind nebula PWN G75.2+0.1, two new radio-jet sources, the HII region Sh 2-104 containing two star clusters, and the radio source NVSS J202032+363158.
Context. A considerable fraction of the gamma-ray sources discovered with the Energetic Gamma-Ray Experiment Telescope (EGRET) remain unidentified. The EGRET sources that have been properly identified are either pulsars or variable sources at both ra dio and gamma-ray wavelengths. Most of the variable sources are strong radio blazars.However, some low galactic-latitude EGRET sources, with highly variable gamma-ray emission, lack any evident counterpart according to the radio data available until now. Aims. The primary goal of this paper is to identify and characterise the potential radio counterparts of four highly variable gamma-ray sources in the galactic plane through mapping the radio surroundings of the EGRET confidence contours and determining the variable radio sources in the field whenever possible. Methods. We have carried out a radio exploration of the fields of the selected EGRET sources using the Giant Metrewave Radio Telescope (GMRT) interferometer at 21 cm wavelength, with pointings being separated by months. Results. We detected a total of 151 radio sources. Among them, we identified a few radio sources whose flux density has apparently changed on timescales of months. Despite the limitations of our search, their possible variability makes these objects a top-priority target for multiwavelength studies of the potential counterparts of highly variable, unidentified gamma-ray sources.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا