ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we present the first observations of the Ophiuchus molecular cloud performed as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) with the SCUBA-2 instrument. We demonstrate methods for combining these data with p revious HARP CO, Herschel, and IRAM N$_{2}$H$^{+}$ observations in order to accurately quantify the properties of the SCUBA-2 sources in Ophiuchus. We produce a catalogue of all of the sources found by SCUBA-2. We separate these into protostars and starless cores. We list all of the starless cores and perform a full virial analysis, including external pressure. This is the first time that external pressure has been included in this level of detail. We find that the majority of our cores are either bound or virialised. Gravitational energy and external pressure are on average of a similar order of magnitude, but with some variation from region to region. We find that cores in the Oph A region are gravitationally bound prestellar cores, while cores in the Oph C and E regions are pressure-confined. We determine that N$_{2}$H$^{+}$ is a good tracer of the bound material of prestellar cores, although we find some evidence for N$_{2}$H$^{+}$ freeze-out at the very highest core densities. We find that non-thermal linewidths decrease substantially between the gas traced by C$^{18}$O and that traced by N$_{2}$H$^{+}$, indicating the dissipation of turbulence at higher densities. We find that the critical Bonnor-Ebert stability criterion is not a good indicator of the boundedness of our cores. We detect the pre-brown dwarf candidate Oph B-11 and find a flux density and mass consistent with previous work. We discuss regional variations in the nature of the cores and find further support for our previous hypothesis of a global evolutionary gradient across the cloud from southwest to northeast, indicating sequential star formation across the region.
We present high angular resolution observations, taken with the Very Large Array (VLA) and Multiple Element Radio Linked Interferometer Network (MERLIN) radio telescopes, at 7mm and 4.4cm respectively, of the prototype Class 0 protostar VLA1623. At 7 mm we detect two sources (VLA1623A & B) coincident with the two previously detected components at the centre of this system. The separation between the two is 1.2arcsec, or ~170AU at an assumed distance of 139pc. The upper limit to the size of the source coincident with each component of VLA1623 is ~0.7arcsec, in agreement with previous findings. This corresponds to a diameter of ~100AU at an assumed distance of 139pc. Both components show the same general trend in their broadband continuum spectra, of a steeper dust continuum spectrum shortward of 7mm and a flatter spectrum longward of this. We estimate an upper limit to the VLA1623A disc mass of <0.13Msol and an upper limit to its radius of ~50AU. The longer wavelength data have a spectral index of alpha~0.6+/-0.3. This is too steep to be explained by optically thin free-free emission. It is most likely due to optically thick free-free emission. Alternatively, we speculate that it might be due to the formation of larger grains or planetesimals in the circumstellar disc. We estimate the mass of VLA1623B to be <0.15M$sol. We can place a lower limit to its size of ~30x7 AU, and an upper limit to its diameter of ~100AU. The longer wavelength data of VLA1623B also have a spectral index of alpha~0.6+/-0.3. The nature of VLA1623B remains a matter of debate. It could be a binary companion to the protostar, or a knot in the radio jet from VLA1623A.
We use the SPIRE Fourier-Transform Spectrometer (FTS) on-board the ESA Herschel Space Telescope to analyse the submillimetre spectrum of the Ultra-compact HII region G29.96-0.02. Spectral lines from species including 13CO, CO, [CI], and [NII] are det ected. A sparse map of the [NII] emission shows at least one other HII region neighbouring the clump containing the UCHII. The FTS spectra are combined with ISO SWS and LWS spectra and fluxes from the literature to present a detailed spectrum of the source spanning three orders of magnitude in wavelength. The quality of the spectrum longwards of 100 {mu}m allows us to fit a single temperature greybody with temperature 80.3pm0.6K and dust emissivity index 1.73pm0.02, an accuracy rarely obtained with previous instruments. We estimate a mass of 1500 Msol for the clump containing the HII region. The clumps bolometeric luminosity of 4 x 10^6 Lsol is comparable to, or slightly greater than, the known O-star powering the UCHII region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا