ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on a calculation of the B*Bpi coupling in lattice QCD. The strong matrix element for a B* to Bpi transition is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HMChPT) for B mesons. We car ry out our calculation directly at the b-quark mass using a non-perturbatively tuned clover action that controls discretization effects of order pa and (ma)^n for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of ainverse = 1.729(25) GeV, ainverse = 2.281(28) GeV, and unitary pion masses down to 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HMChPT coupling g_b = 0.56(3)stat(7)sys in the continuum and at the physical light-quark masses. This is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between previous results at the charm mass and at the static point.
We compute the electromagnetic form factor of a pion with mass m_pi=330MeV at low values of Q^2equiv -q^2, where q is the momentum transfer. The computations are performed in a lattice simulation using an ensemble of the RBC/UKQCD collaborations gaug e configurations with Domain Wall Fermions and the Iwasaki gauge action with an inverse lattice spacing of 1.73(3)GeV. In order to be able to reach low momentum transfers we use partially twisted boundary conditions using the techniques we have developed and tested earlier. For the pion of mass 330MeV we find a charge radius given by <r_pi^2>_{330MeV}=0.354(31)fm^2 which, using NLO SU(2) chiral perturbation theory, extrapolates to a value of <r_pi^2>=0.418(31)fm^2 for a physical pion, in agreement with the experimentally determined result. We confirm that there is a significant reduction in computational cost when using propagators computed from a single time-slice stochastic source compared to using those with a point source; for m_pi=330MeV and volume (2.74fm)^3 we find the reduction is approximately a factor of 12.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا