ترغب بنشر مسار تعليمي؟ اضغط هنا

In a previous work, we reported on the discovery of supersonic magnetic upflows on granular cells in data from the {sc Sunrise}/IMaX instrument. In the present work we investigate the physical origin of these events employing data of the same instrum ent but with higher spectral sampling. By means of the inversion of Stokes profiles we are able to recover the physical parameters (temperature, magnetic field, line-of-sight velocity, etc) present in the solar photosphere at the time of these events. The inversion is performed in a Monte-Carlo-like fashion, that is, repeating it many times with different initializations and retaining only the best result. We find that many of the events are characterized by a reversal in the polarity of the magnetic field along the vertical direction in the photosphere, accompanied by an enhancement in the temperature and by supersonic line-of-sight velocities. In about half of the studied events, large blue-shifted and red-shifted line-of-sight velocities coexist above/below each other. These features can be explained in terms of magnetic reconnection, where the energy stored in the magnetic field is released in the form of kinetic and thermal energy when magnetic field lines of opposite polarities coalesce. However, the agreement with magnetic reconnection is not perfect and therefore, other possible physical mechanisms might also play a role.
Using the IMaX instrument on-board the Sunrise stratospheric balloon-telescope we have detected extremely shifted polarization signals around the Fe I 5250.217 {AA} spectral line within granules in the solar photosphere. We interpret the velocities a ssociated with these events as corresponding to supersonic and magnetic upflows. In addition, they are also related to the appearance of opposite polarities and highly inclined magnetic fields. This suggests that they are produced by the reconnection of emerging magnetic loops through granular upflows. The events occupy an average area of 0.046 arcsec$^2$ and last for about 80 seconds, with larger events having longer lifetimes. These supersonic events occur at a rate of $1.3times10^{-5}$ occurrences per second per arcsec$^{2}$.
We employ a 3-dimensional magnetohydrostatic model of a horizontal flux tube, embedded in a magnetic surrounding atmosphere, to successfully reproduce the azimuthal and center-to-limb variations of the Net Circular Polarization observed in sunspot pe numbrae. This success is partly due to the realistic modeling of the interaction between the flux tube and the surrounding magnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا