ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the discovery of the progenitor of the recent type IIn SN 2008S in the nearby galaxy NGC 6946. Surprisingly, it was not found in deep, pre-explosion optical images of its host galaxy taken with the Large Binocular Telescope, but only throug h examination of archival Spitzer mid-IR data. A source coincident with the SN 2008S position is clearly detected in the 4.5, 5.8, and 8.0 micron IRAC bands, showing no evident variability in the three years prior to the explosion, yet is undetected at 3.6 and 24 micron. The distinct presence of ~440 K dust, along with stringent LBT limits on the optical fluxes, suggests that the progenitor of SN 2008S was engulfed in a shroud of its own dust. The inferred luminosity of 3.5x10^4 Lsun implies a modest mass of ~10 Msun. We conclude that objects like SN 2008S are not exclusively associated with the deaths or outbursts of very massive eta Carinae-like objects. This conclusion holds based solely on the optical flux limits even if our identification of the progenitor with the mid-IR source is incorrect.
We present extensive ugrizYHJK photometry and optical spectroscopy of SN 2005gj obtained by the SDSS-II and CSP Supernova Projects, which give excellent coverage during the first 150 days after the time of explosion. These data show that SN 2005gj is the second clear case, after SN 2002ic, of a thermonuclear explosion in a dense circumstellar environment. Both the presence of singly and doubly ionized iron-peak elements (FeIII and weak SII, SiII) near maximum light as well as the spectral evolution show that SN 2002ic-like events are Type Ia explosions. Independent evidence comes from the exponential decay in luminosity of SN 2005gj, pointing to an exponential density distribution of the ejecta. The interaction of the supernova ejecta with the dense circumstellar medium is stronger than in SN 2002ic: (1) the supernova lines are weaker; (2) the Balmer emission lines are more luminous; and (3) the bolometric luminosity is higher close to maximum light. The velocity evolution of the Halpha components suggest that the CSM around SN 2005gj is clumpy and it has a flatter density distribution compared with the steady wind solution, in agreement with SN 2002ic. An early X-ray observation with Chandra gives an upper-limit on the mass loss rate from the companion of < 2x10^{-4} Msun/yr.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا