ترغب بنشر مسار تعليمي؟ اضغط هنا

Conventional economic analysis of stringent climate change mitigation policy generally concludes various levels of economic slowdown as a result of substantial spending on low carbon technology. Equilibrium economics however could not explain or pred ict the current economic crisis, which is of financial nature. Meanwhile the economic impacts of climate policy find their source through investments for the diffusion of environmental innovations, in parts a financial problem. Here, we expose how results of economic analysis of climate change mitigation policy depend entirely on assumptions and theory concerning the finance of the diffusion of innovations, and that in many cases, results are simply re-iterations of model assumptions. We show that, while equilibrium economics always predict economic slowdown, methods using non-equilibrium approaches suggest the opposite could occur. We show that the solution to understanding the economic impacts of reducing greenhouse gas emissions lies with research on the dynamics of the financial sector interacting with innovation and technology developments, economic history providing powerful insights through important analogies with previous historical waves of innovation.
This paper presents an analysis of climate policy instruments for the decarbonisation of the global electricity sector in a non-equilibrium economic and technology diffusion perspective. Energy markets are driven by innovation, path-dependent technol ogy choices and diffusion. However, conventional optimisation models lack detail on these aspects and have limited ability to address the effectiveness of policy interventions because they do not represent decision-making. As a result, known effects of technology lock-ins are liable to be underestimated. In contrast, our approach places investor decision-making at the core of the analysis and investigates how it drives the diffusion of low-carbon technology in a highly disaggregated, hybrid, global macroeconometric model, FTT:Power-E3MG. Ten scenarios to 2050 of the electricity sector in 21 regions exploring combinations of electricity policy instruments are analysed, including their climate impacts. We show that in a diffusion and path-dependent perspective, the impact of combinations of policies does not correspond to the sum of impacts of individual instruments: synergies exist between policy tools. We argue that the carbon price required to break the current fossil technology lock-in can be much lower when combined with other policies, and that a 90% decarbonisation of the electricity sector by 2050 is affordable without early scrapping.
The low-energy electronic structure of the itinerant metamagnet Sr3Ru2O7 is investigated by angle resolved photoemission and density functional calculations. We find well-defined quasiparticle bands with resolution limited line widths and Fermi veloc ities up to an order of magnitude lower than in single layer Sr2RuO4. The complete topography, the cyclotron masses and the orbital character of the Fermi surface are determined, in agreement with bulk sensitive de Haas - van Alphen measurements. An analysis of the dxy band dispersion reveals a complex density of states including van Hove singularities (vHs) near the Fermi level; a situation which is favorable for magnetic instabilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا