ترغب بنشر مسار تعليمي؟ اضغط هنا

We report here the first results of a multi-wavelength campaign focussing on magnetospheric accretion processes within the close binary system V4046 Sgr, hosting two partly-convective classical T Tauri stars of masses ~0.9 Msun and age ~12 Myr. In th is paper, we present time-resolved spectropolarimetric observations collected in 2009 September with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) and covering a full span of 7d or ~2.5 orbital/rotational cycles of V4046 Sgr. Small circularly polarised Zeeman signatures are detected in the photospheric absorption lines but not in the accretion-powered emission lines of V4046 Sgr, thereby demonstrating that both system components host large-scale magnetic fields weaker and more complex than those of younger, fully-convective cTTSs of only a few Myr and similar masses. Applying our tomographic imaging tools to the collected data set, we reconstruct maps of the large-scale magnetic field, photospheric brightness and accretion-powered emission at the surfaces of both stars of V4046 Sgr. We find that these fields include significant toroidal components, and that their poloidal components are mostly non-axisymmetric with a dipolar component of 50-100G strongly tilted with respect to the rotation axis; given the similarity with fields of partly-convective main-sequence stars of similar masses and rotation periods, we conclude that these fields are most likely generated by dynamo processes. We also find that both stars in the system show cool spots close to the pole and extended regions of low-contrast, accretion-powered emission; it suggests that mass accretion is likely distributed rather than confined in well defined high-contrast accretion spots, in agreement with the derived magnetic field complexity.
From observations collected with the ESPaDOnS and NARVAL spectropolarimeters, we report the detection of Zeeman signatures on the classical T Tauri star BP Tau. Circular polarisation signatures in photospheric lines and in narrow emission lines traci ng magnetospheric accretion are monitored throughout most of the rotation cycle of BP Tau at two different epochs in 2006. We observe that rotational modulation dominates the temporal variations of both unpolarised and circularly polarised spectral proxies tracing the photosphere and the footpoints of accretion funnels. From the complete data sets at each epoch, we reconstruct the large-scale magnetic topology and the location of accretion spots at the surface of BP Tau using tomographic imaging. We find that the field of BP Tau involves a 1.2 kG dipole and 1.6 kG octupole, both slightly tilted with respect to the rotation axis. Accretion spots coincide with the two main magnetic poles at high latitudes and overlap with dark photospheric spots; they cover about 2% of the stellar surface. The strong mainly-axisymmetric poloidal field of BP Tau is very reminiscent of magnetic topologies of fully-convective dwarfs. It suggests that magnetic fields of fully-convective cTTSs such as BP Tau are likely not fossil remants, but rather result from vigorous dynamo action operating within the bulk of their convective zones. Preliminary modelling suggests that the magnetosphere of BP Tau extends to distances of at least 4 R* to ensure that accretion spots are located at high latitudes, and is not blown open close to the surface by a putative stellar wind. It apparently succeeds in coupling to the accretion disc as far out as the corotation radius, and could possibly explain the slow rotation of BP Tau.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا