ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate turbulent properties of the non-star-forming, translucent molecular cloud, MBM16 by applying the statistical technique of a two-dimensional spatial power spectrum (SPS) on the neutral hydrogen (HI) observations obtained by the Galactic Arecibo L-Band Feed Array HI (GALFA-HI) survey. The SPS, calculated over the range of spatial scales from 0.1 to 17 pc, is well represented with a single power-law function, with a slope ranging from -3.3 to -3.7 and being consistent over the velocity range of MBM16 for a fixed velocity channel thickness. However, the slope varies significantly with the velocity slice thickness, suggesting that both velocity and density contribute to HI intensity fluctuations. By using this variation we estimate the slope of 3D density fluctuations in MBM16 to be -3.7pm0.2. This is significantly steeper than what has been found for HI in the Milky Way plane, the Small Magellanic Cloud, or the Magellanic Bridge, suggesting that interstellar turbulence in MBM16 is driven on scales >17 pc and that the lack of stellar feedback could be responsible for the steep power spectrum.
The disruption of the M33 galaxy is evident from its extended gaseous structure. We present new data from the Galactic Arecibo L-Band Feed Array HI (GALFA-HI) Survey that show the full extent and detailed spatial and kinematic structure of M33s neutr al hydrogen. Over 18% of the HI mass of M33 (M_HI(tot) =1.4 x 10^9 Msun) is found beyond the star forming disk as traced in the far-ultraviolet (FUV). The most distinct features are extended warps, an arc from the northern warp to the disk, diffuse gas surrounding the galaxy, and a southern cloud with a filament back to the galaxy. The features extend out to 22 kpc from the galaxy center (18 kpc from the edge of the FUV disk) and the gas is directly connected to M33s disk. Only five discrete clouds (i.e., gas not directly connected to M33 in position-velocity space) are catalogued in the vicinity of M33, and these clouds show similar properties to Galactic and M31 halo clouds. M33s gaseous features most likely originate from the tidal disruption of M33 by M31 1-3 Gyr ago as shown from an orbit analysis which results in a tidal radius < 15 kpc in the majority of M33s possible orbits. M33 is now beyond the disruptive gravitational influence of M31 and the gas appears to be returning to M33s disk and redistributing its star formation fuel. M33s high mean velocity dispersion in the disk (~18.5 km/s) may also be consistent with the previous interaction and high rate of star formation. M33 will either exhaust its star formation fuel in the next few Gyrs or eventually become star formation fuel for M31. The latter represents the accretion of a large gaseous satellite by a spiral galaxy, similar to the Magellanic Clouds relationship to the Galaxy.
Halo clouds have been found about the three largest galaxies of the Local Group and in the halos of nearby spirals. This suggests they are a relatively generic feature of the galaxy evolution process and a source of fuel for galaxy disks. In this rev iew, two main sources of disk star formation fuel, satellite material and clouds condensing from the hot halo medium, are discussed and their contribution to fueling the Galaxy quantified. The origin of the halo gas of M31 and M33 is also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا