ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper presents spectra in the 2 to 20 micron range of quiescent cloud material located in the IC 5146 cloud complex. The spectra were obtained with NASAs Infrared Telescope Facility (IRTF) SpeX instrument and the Spitzer Space Telescopes Infrare d Spectrometer. We use these spectra to investigate dust and ice absorption features in pristine regions of the cloud that are unaltered by embedded stars. We find that the H2O-ice threshold extinction is 4.03+/-0.05 mag. Once foreground extinction is taken into account, however, the threshold drops to 3.2 mag, equivalent to that found for the Taurus dark cloud, generally assumed to be the touchstone quiescent cloud against which all other dense cloud and embedded young stellar object observations are compared. Substructure in the trough of the silicate band for two sources is attributed to CH3OH and NH3 in the ices, present at the ~2% and ~5% levels, respectively, relative to H2O-ice. The correlation of the silicate feature with the E(J-K) color excess is found to follow a much shallower slope relative to lines of sight that probe diffuse clouds, supporting the previous results by Chiar et al. (2007).
Studying the composition of dust in the interstellar medium (ISM) is crucial in understanding the cycle of dust in our galaxy. The mid-infrared spectral signature of amorphous silicates, the most abundant dust species in the ISM, is studied in differ ent lines-of-sight through the Galactic plane, thus probing different conditions in the ISM. We have analysed 10 spectra from the Spitzer archive, of which 6 lines-of-sight probe diffuse interstellar medium material and 4 probe molecular cloud material. The 9.7 um silicate absorption features in 7 of these spectra were studied in terms of their shape and strength. In addition, the shape of the 18 um silicate absorption features in 4 of the diffuse sightline spectra were analysed. The 9.7 um silicate absorption bands in the diffuse sightlines show a strikingly similar band shape. This is also the case for all but one of the 18 um silicate absorption bands observed in diffuse lines-of-sight. The 9.7 um bands in the 4 molecular sightlines show small variations in shape. These modest variations in the band shape are inconsistent with the interpretation of the large variations in {tau}_9.7/E(J-K) between diffuse and molecular sightlines in terms of silicate grain growth. Instead, we suggest that the large changes in {tau}_9.7 / E(J-K) must be due to changes in E(J-K).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا