ترغب بنشر مسار تعليمي؟ اضغط هنا

Quartz capillary tube/fibers have been filled with anthracene by a melt and vacuum inbibition process to fabricate a scintillating core fiber. Other polcyclic aromatic hydrocarbons(PAH), such as p-Terphenyl (pTP), stilbene or naphthalene are also wel l-suited to scintillating/shifting fiber cores. The resulting scintillating core with quartz cladding capillary fibers (250-750 micron cores) had a high specific light output when tested with muons (8 p.e. per MIP). These PAH core quartz capillary cladding scintillating/shifting optical fibers have the potential of high radiation resistance, fast response, and are applicable to many energy and intensity frontier experiments.
A novel calorimeter sensor for electron, photon and hadron energy measurement based on Secondary Emission(SE) to measure ionization is described, using sheet-dynodes directly as the active detection medium; the shower particles in an SE calorimeter c ause direct secondary emission from dynode arrays comprising the sampling or absorbing medium. Data is presented on prototype tests and Monte Carlo simulations. This sensor can be made radiation hard at GigaRad levels, is easily transversely segmentable at the mm scale, and in a calorimeter has energy signal rise-times and integration comparable to or better than plastic scintillation/PMT calorimeters. Applications are mainly in the energy and intensity frontiers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا