ترغب بنشر مسار تعليمي؟ اضغط هنا

On 13 March 2010 an unusually long duration event was observed by radio spectrographs onboard the STEREO-B and Wind spacecraft. The event started at about 13:00 UT and ended at approximately 06:00 UT on 14 March. The event presents itself as slow dri fting, quasi-continuous emission in a very narrow frequency interval, with an apparent frequency drift from about 625 kHz to approximately 425 kHz. Using the Leblanc, Dulk, and Bougeret (1998) interplanetary density model we determined that the drift velocities of the radio source are $approx$33km s$^{-1}$ and $approx$52km s$^{-1}$ for 0.2 and 0.5 times the densities of Leblanc model, respectively with a normalization density of 7.2cm$^{-3}$ at 1AU and assuming harmonic emission. A joint analysis of the radio direction finding data, coronograph white-light observations and modeling revealed that the radio sources appear to be localized in regions of interaction with relatively high density and slow solar wind speed.
The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) provides a new tool for the systematic observation of white-light flares, including Doppler and magnetic information as well as continuum. In our initial analysis of the highly impulsive gamma-ray flare SOL2010-06-12T00:57 (Mart{i}nez Oliveros et al., Solar Phys., 269, 269, 2011), we reported the signature of a strong blueshift in the two footpoint sources. Concerned that this might be an artifact due to aliasing peculiar to the HMI instrument, we undertook a comparative analysis of Global Oscillations Network Group (GONG++) observations of the same flare, using the PArametric Smearing Correction ALgorithm (PASCAL) algorithm to correct for artifacts caused by variations in atmospheric smearing. This analysis confirms the artifactual nature of the apparent blueshift in the HMI observations, finding weak redshifts at the footpoints instead. We describe the use of PASCAL with GONG++ observations as a complement to the SDO observations and discuss constraints imposed by the use of HMI far from its design conditions. With proper precautions, these data provide rich information on flares and transients.
We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric FeI line at 6173.34{AA} and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning pm172m{AA} around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and Upsilon-ray spectra (this was the first Upsilon-ray flare of Cycle 24). The FeI line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا