ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic structure of plutonium metal and its compounds pose a grand challenge for a fundamental understanding of the Pu-5$f$ electron character. For 30 years the plutonium chalcogenides have been especially challenging, and multiple theoretica l scenarios have been proposed to explain their unusual behavior. We present extensive high-resolution photoemission data on a single crystal of PuTe, which has also been proposed as a topological insulator. The new experimental results on this mixed-valent material provide a constraint to the theoretical modeling and new dynamical mean-field theory calculations agree with the experimental results. Comparisons with Pu metal provide new insight in understanding its complex electronic structure.
Quantum matter hosts a large variety of phases, some coexisting, some competing; when two or more orders occur together, they are often entangled and cannot be separated. Dynamical multiferroicity, where fluctuations of electric dipoles lead to magne tisation, is an example where the two orders are impossible to disentangle. Here we demonstrate elevated magnetic response of a ferroelectric near the ferroelectric quantum critical point (FE QCP) since magnetic fluctuations are entangled with ferroelectric fluctuations. We thus suggest that any ferroelectric quantum critical point is an textit{inherent} multiferroic quantum critical point. We calculate the magnetic susceptibility near the FE QCP and find a region with enhanced magnetic signatures that appears near the FE QCP, and controlled by the tuning parameter of the ferroelectric phase. The effect is small but observable - we propose quantum paraelectric strontium titanate as a candidate material where the magnitude of the induced magnetic moments can be $sim 5 times 10^{-7} mu_{B}$ per unit cell near the FE QCP.
199 - Shou-Shu Gong , W. Zhu , J.-X. Zhu 2017
We study the spin-$1/2$ Heisenberg model on the triangular lattice with the nearest-neighbor $J_1 > 0$, the next-nearest-neighobr $J_2 > 0$ Heisenberg interactions, and the additional scalar chiral interaction $J_{chi}(vec{S}_i times vec{S}_j) cdot v ec{S}_k$ for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder geometry. With increasing $J_2$ ($J_2/J_1 leq 0.3$) and $J_{chi}$ ($J_{chi}/J_1 leq 1.0$) interactions, we establish a quantum phase diagram with the magnetically ordered $120^{circ}$ phase, stripe phase, and non-coplanar tetrahedral phase. In between these magnetic order phases, we find a chiral spin liquid (CSL) phase, which is identified as a $ u = 1/2$ bosonic fractional quantum Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we find that the previously identified spin liquid in the $J_1 - J_2$ triangular model ($0.08 lesssim J_2/J_1 lesssim 0.15$) shows a phase transition to the CSL phase at very small $J_{chi}$. We also compute spin triplet gap in both spin liquid phases, and our finite-size results suggest large gap in the odd topological sector but small or vanishing gap in the even sector. We discuss the implications of our results to the nature of the spin liquid phases.
148 - S. Seo , Xin Lu , J.-X. Zhu 2014
In four classes of materials, the layered copper-oxides, organics, iron-pnictides and heavy-fermion compounds, an unconventional superconducting state emerges as a magnetic transition is tuned toward absolute zero temperature, that is, toward a magne tic quantum-critical point (QCP). In most materials, the QCP is accessed by chemical substitutions or applied pressure. CeCoIn5 is one of the few materials that are born as a quantum-critical superconductor and, therefore, offers the opportunity to explore the consequences of chemical disorder. Cadmium-doped crystals of CeCoIn5 are a particularly interesting case where Cd substitution induces long-range magnetic order, as in Zn-doped copper-oxides. Applied pressure globally supresses the Cd-induced magnetic order and restores bulk superconductivity. Here we show, however, that local magnetic correlations, whose spatial extent decreases with applied pressure, persist at the extrapolated QCP. The residual droplets of impurity-induced magnetic moments prevent the reappearance of conventional signatures of quantum criticality, but induce a heterogeneous electronic state. These discoveries show that spin droplets can be a source of electronic heterogeneity in classes of strongly correlated electron systems and emphasize the need for caution when interpreting the effects of tuning a correlated system by chemical substitution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا