ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Gran Telescopio Canarias (GTC) optical transit narrow-band photometry of the hot-Jupiter exoplanet XO-2b using the OSIRIS instrument. This unique instrument has the capabilities to deliver high cadence narrow-band photometric lightcurves, allowing us to probe the atmospheric composition of hot Jupiters from the ground. The observations were taken during three transit events which cover four wavelengths at spectral resolutions near 500, necessary for observing atmospheric features, and have near-photon limited sub-mmag precisions. Precision narrow-band photometry on a large aperture telescope allows for atmospheric transmission spectral features to be observed for exoplanets around much fainter stars than those of the well studied targets HD209458b and HD189733b, providing access to the majority of known transiting planets. For XO-2b, we measure planet-to-star radius contrasts of R_pl/R_star=0.10508+/-0.00052 at 6792 Ang, 0.10640+/-0.00058 at 7582 Ang, and 0.10686+/-0.00060 at 7664.9 Ang, and 0.10362+/-0.00051 at 8839 Ang. These measurements reveal significant spectral features at two wavelengths, with an absorption level of 0.067+/-0.016% at 7664.9 Ang due to atmospheric potassium in the line core (a 4.1-sigma significance level), and an absorption level of 0.058+/-0.016% at 7582 Ang, (a 3.6-sigma significance level). When comparing our measurements to hot-Jupiter atmospheric models, we find good agreement with models which are dominated in the optical by alkali metals. This is the first evidence for potassium in an extrasolar planet, an element that has long been theorized along with sodium to be a dominant source of opacity at optical wavelengths for hot Jupiters.
We present new observations of a transit of the 111-day-period exoplanet HD80606b. Using the Spitzer Space Telescope and its IRAC camera on the post-cryogenic mission, we performed a 19-hour-long photometric observation of HD80606 that covers the ful l transit of 13-14 January 2010. We complement this photometric data by new spectroscopic observations that we simultaneously performed with SOPHIE at Haute-Provence Observatory. This provides radial velocity measurements of the first half of the transit that was previously uncovered with spectroscopy. This new data set allows the parameters of this singular planetary system to be significantly refined. We obtained a planet-to-star radius ratio R_p/R_* = 0.1001 +/- 0.0006 that is slightly lower than the one measured from previous ground observations. We detected a feature in the Spitzer light curve that could be due to a stellar spot. We also found a transit timing about 20 minutes earlier than the ephemeris prediction; this could be caused by actual TTVs due to an additional body in the system or by underestimated systematic uncertainties. The sky-projected angle between the spin-axis of HD80606 and the normal to the planetary orbital plane is found to be lambda = 42 +/- 8 degrees thanks to the fit of the Rossiter-McLaughlin anomaly. This allows scenarios with aligned spin-orbit to be definitively rejected. Over the twenty planetary systems with measured spin-orbit angles, a few of them are misaligned; this is probably the signature of two different evolution scenarios for misaligned and aligned systems, depending if they experienced or not gravitational interaction with a third body. As in the case of HD80606b, most of the planetary systems including a massive planet are tilted; this could be the signature of a separate evolution scenario for massive planets in comparison with Jupiter-mass planets.
Transiting planets like HD209458b offer a unique opportunity to scrutinize their atmospheric composition and structure. Transit spectroscopy probes the transition region between the day and night sides, called limb. We present a re-analysis of existi ng archived HST/STIS transmission spectra of HD209458bs atmosphere. From these observations we: Identify H2 Rayleigh scattering, derive the absolute Sodium abundance and quantify its depletion in the upper atmosphere, extract a stratospheric T-P profile with a temperature inversion and explain broad band absorptions with the presence of TiO and VO molecules in the atmosphere of this planet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا