ترغب بنشر مسار تعليمي؟ اضغط هنا

We have studied channeling effects in a Cesium Iodide (CsI) crystal that is similar in composition to the ones being used in a search for Weakly Interacting Massive Particles (WIMPs) dark matter candidates, and measured its energy-dependent quenching factor, the relative scintillation yield for electron and nuclear recoils. The experimental results are reproduced with a GEANT4 simulation that includes a model of the scintillation efficiency as a function of electronic stopping power. We present the measured and simulated quenching factors and the estimated effects of channeling.
Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions driving novel emergent behavior. This is exemplified in 5d osm ates that host a metal-insulator transition (MIT) driven by magnetic order. Here we consider the most robust case, the 5d perovskite NaOsO3, and reveal a giant coupling between spin and phonon through a frequency shift of {Delta}{omega}=40 cm-1, the largest measured in any material. We identify the dominant octahedral breathing mode and show isosymmetry with spin ordering which induces dynamic charge disproportionation that sheds new light on the MIT. The occurrence of the dramatic spin-phonon-electronic coupling in NaOsO3 is due to a property common to all 5d materials: the large spatial extent of the 5d ion. This allows magnetism to couple to phonons on an unprecedented scale and consequently offers multiple new routes to enhanced coupled phenomena.
80 - J. Ma , J. H. Lee , S. E. Hahn 2014
The crossover from localized- to itinerant-electron behavior is associated with many intriguing phenomena in condensed-matter physics. In this paper, we investigate the crossover from localized to itinerant regimes in the spinel system Mn$_{1-x}$Co$_ x$V$_2$O$_4$. At low Co doping, orbital order (OO) of the localized electrons on the V3+ ions suppresses magnetic frustration by triggering a tetragonal distortion. With Co doping, electronic itinerancy melts the OO and suppresses the structural phase transition while the reduced spin-lattice coupling produces magnetic frustration. Neutron scattering measurements and first-principles-guided spin models reveal that the non-collinear state at high Co doping is produced by weakened local anisotropy and enhanced Co-V spin interactions.
This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_tau approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would require a camera and laser that moves with the flow, effectively `chasing eddies as they advect downstream.
93 - S. Y. Jang , D. Lee , J.-H. Lee 2009
Epitaxial thin films of hexagonal ErMnO3 fabricated on Pt(111)/Al2O3(0001) and YSZ(111) substrates exhibited both ferroelectric character and magnetic ordering at low temperatures. As the temperature was reduced, the ErMnO3 films first showed antifer romagnetism. At lower temperatures, the films deposited at lower oxygen partial pressures exhibited spin glass behavior. This re-entrant spin glass behavior was attributed to competition between an antiferromagnetic interaction in the hexagonal geometry and a ferromagnetic interaction caused by a change in Mn valence induced by excess electrons from the oxygen vacancies.
100 - W. Rakreungdet 2008
We demonstrate accurate single-qubit control in an ensemble of atomic qubits trapped in an optical lattice. The qubits are driven with microwave radiation, and their dynamics tracked by optical probe polarimetry. Real-time diagnostics is crucial to m inimize systematic errors and optimize the performance of single-qubit gates, leading to fidelities of 0.99 for single-qubit pi rotations. We show that increased robustness to large, deliberately introduced errors can be achieved through the use of composite rotations. However, during normal operation the combination of very small intrinsic errors and additional decoherence during the longer pulse sequences precludes any significant performance gain in our current experiment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا