ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we present three groups of microcavities: based on selenium compounds only, based on tellurium compounds only, and structures based on mixed selenium and tellurium compounds. We focus on their possible applications in the field of optoe lectronic devices and fundamental physics (VCSELs, narrow range light sources, studies of cavity-polariton electrodynamics) in a range of wavelength from 540 to 760 nm.
Magnetooptical properties of (Ga,Mn)N layers containing various concentrations of Fe-rich nanocrystals embedded in paramagnetic (Ga,Fe)N layers are reported. Previous studies of such samples demonstrated that magnetization consists of a paramagnetic contribution due to substitutional diluted Fe ions as well as of ferromagnetic and antiferromagnetic components originating from Fe-rich nanocrystals, whose relative abundance can be controlled by the grow conditions. The nanocrystals are found to broaden and to reduce the magnitude of the excitonic features. However, the ferromagnetic contribution, clearly seen in SQUID magnetometry, is not revealed by magnetic circular dichroism (MCD). Possible reasons for differences in magnetic response determined by MCD and SQUID measurements are discussed.
The question of the correlation between magnetization, band splittings, and magnetic circular dichroism (MCD) in the fundamental gap region of dilute magnetic semiconductors is examined experimentally and theoretically taking the case of wurtzite Ga( 1-x)FexN as an example. Magnetization and polarization-resolved reflectivity measurements have been performed down to 2K and up to 7T for x = 0.2%. Optical transitions originating from all three free excitons A, B and C, specific to the wurtzite structure, have been observed and their evolution with the magnetic field determined. It is demonstrated that the magnitude of the exciton splittings evaluated from reflectivity-MCD data can be overestimated by more than a factor of 2, as compared to the values obtained by describing the polarization-resolved reflectivity spectra with appropriate dielectric functions. A series of model calculations shows that the quantitative inaccuracy of MCD originates from a substantial influence of the magnetization-dependent exchange interactions not only on the spin splittings of excitons but also upon their linewidth and oscillator strength. At the same time, a method is proposed that allows to evaluate the field and temperature dependencies of the magnetization from MCD spectra. The accurate values of the excitonic splittings and of the magnetization reported here substantiate the magnitudes of the apparent $sp-d$ exchange integrals in (Ga,Fe)N previously determined.
This work presents methods of controlling the density of self-assembled CdTe quantum dots (QDs) grown by molecular beam epitaxy. Two approaches are discussed: increasing the deposition temperature of CdTe and the reduction of CdTe layer thickness. Ph otoluminescence (PL) measurements at low temperature confirms that both methods can be used for significant reduction of QDs density from 10$^{10}$QD/cm$^2$ to 10$^7$-10$^8$QD/cm$^2$. For very low QDs density, identification of all QDs lines observed in the spectrum is possible.
We present the realization and characterization of a 20 fold, fully lattice-matched epitaxial distributed Bragg reflector based on (Cd,Zn)Te and (Cd,Zn,Mg)Te layers. We also present a microcavity based on (Cd,Zn,Mg)Te containing a (Cd,Zn)Te quantum w ell. Reflectivity spectra, photoluminescence in real space and in far field are presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا