ترغب بنشر مسار تعليمي؟ اضغط هنا

213 - B. Gross , J. Yuan , D.Y. An 2013
Recently it has been found that, when operated at large input power, the linewidth of terahertz radiation emitted from intrinsic Josephson junction stacks can be as narrow as some megahertz. In this high-bias regime a hot spot coexists with regions w hich are still superconducting. Surprisingly, the linewidth was found to decrease with increasing bath temperature. We present a simple model describing the dynamics of the stack in the presence of a hot spot by two parallel arrays of pointlike Josephson junctions and an additional shunt resistor in parallel. Heat diffusion is taken into account by thermally coupling all elements to a bath at temperature T_b. We present current-voltage characteristics of the coupled system and calculations of the linewidth of the radiation as a function of T_b. In the presence of a spatial gradient of the junction parameters critical current and resistance, the linewidth deceases with increasing T_b, similar to the experimental observation.
103 - B. Gross , S. Guenon , J. Yuan 2012
We have studied experimentally and numerically temperature profiles and the formation of hot spots in intrinsic Josephson junction stacks in Bi2Sr2CaCu2O8 (BSCCO). The superconducting stacks are biased in a state where all junctions are resistive. Th e formation of hot spots in this system is shown to arise mainly from the strongly negative temperature coefficient of the c-axis resistivity of BSCCO at low temperatures. This leads to situations where the maximum temperature in the hot spot can be below or above the superconducting transition temperature Tc. The numerical simulations are in good agreement with the experimental observations.
213 - M. Y. Li , J. Yuan , N. Kinev 2012
We report on measurements of the linewidth {Delta}f of THz radiation emitted from intrinsic Josephson junction stacks, using a Nb/AlN/NbN integrated receiver for detection. Previous resolution limited measurements indicated that {Delta}f may be below 1 GHz - much smaller than expected from a purely cavity-induced synchronization. While at low bias we found {Delta}f to be not smaller than ? 500 MHz, at high bias, where a hotspot coexists with regions which are still superconducting, {Delta}f turned out to be as narrow as 23 MHz. We attribute this to the hotspot acting as a synchronizing element. {Delta}f decreases with increasing bath temperature, a behavior reminiscent of motional narrowing in NMR or ESR, but hard to explain in standard electrodynamic models of Josephson junctions.
78 - B. X. Wu , K. Jin , J. Yuan 2009
A series of electron-doped cuprate La(2-x)CexCuO4 thin films with different thicknesses have been fabricated and their annealing time are adjusted carefully to ensure the highest superconducting transition temperature. The transport measurements indi cate that, with the increase of the film thickness (<100 nm), the residual resistivity increases and the Hall coefficient shifts in the negative direction. Further more, the X-ray diffraction data reveal that the c-axis lattice constant c0 increases with the decrease of film thickness. These abnormal phenomena can be attributed to the insufficient oxygen reduction in the thin films. Considering the lattice mismatching in the ab-plane between the SrTiO3 substrates and the films, the compressive stress from the substrates may be responsible for the more difficult reduction of the oxygen in the thin films.
69 - B. X. Wu , K. Jin , J. Yuan 2009
A series of c-axis oriented electron-doped high-Tc superconducting La(2-x)CexCuO4 thin films, from heavily underdoped x=0.06 to heavily overdoped x=0.19, have been synthesized by dc magnetron sputtering technique on (100) SrTiO3 substrates. The influ ence of various fabrication conditions, such as the deposition temperature and the deposition rate, etc., on the quality of the thin films has been scrutinized. We find that the quality of the films is less sensitive to the deposition temperature in the overdoped region than that in the underdoped region. In the phase diagram of Tc(x), the superconducting dome indicates that the optimally doping level is at the point x=0.105 with the transition temperature Tc0 = 26.5 K. Further more, both the disappearance of the upturn in the $rho_{xx}$(T) curve at low temperature under H=10 T and the positive differential Hall coefficient, $R_H=d rho_{xy}/dH$, are observed around x = 0.15, implying a possible rearrangement of Fermi surface at this doping level.
192 - H.B. Wang , S. Guenon , J. Yuan 2008
Recently, it has been shown that large stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8 emit synchronous THz radiation, the synchronization presumably triggered by a cavity resonance. To investigate this effect we use Low Temperature Scanning Laser Microscopy to image electric field distributions. Apart from verifying the appearance of cavity modes at low bias we find that, in a high input power regime, standing-wave patterns are created through interactions with a hot spot, possibly pointing to a new mode of generating synchronized radiation in intrinsic Josephson junction stacks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا