ترغب بنشر مسار تعليمي؟ اضغط هنا

152 - Y. Kikukawa , M. Kohda , J. Yasuda 2009
In models of dynamical electroweak symmetry breaking due to strongly coupled fourth-family quarks and leptons, their low-energy effective descriptions may involve multiple composite Higgs fields, leading to a possibility that the electroweak phase tr ansition at finite temperature is first order due to the Coleman-Weinberg mechanism. We examine the behavior of the electroweak phase transition based on the effective renormalizable Yukawa theory which consists of the fourth-family quarks and two SU(2)-doublet Higgs fields corresponding to the bilinear operators of the fourth-family quarks with/without imposing the compositeness condition. The strength of the first-order phase transition is estimated by using the finite-temperature effective potential at one-loop with the ring-improvement. In the Yukawa theory without the compositeness condition, it is found that there is a parameter region where the first-order phase transition is strong enough for the electroweak baryogenesis with the experimentally acceptable Higgs boson and fourth-family quark masses. On the other hand, when the compositeness condition is imposed, the phase transition turns out to be weakly first order, or possibly second order, although the result is rather sensitive to the details of the compositeness condition. Combining with the result of the Yukawa theory without the compositeness condition, it is argued that with the fourth-family quark masses in the range of 330-480 GeV, corresponding to the compositeness scale in the range of 1.0-2.3 TeV, the four-fermion interaction among the fourth-family quarks does not lead to the strongly first-order electroweak phase transition.
It has been argued by Pisarski and Wilczek that finite temperature restoration of the chiral symmetry SU(Nf) x SU(Nf) is first-order for Nf >=3. This type of chiral symmetry with a large Nf may appear in the Higgs sector if one considers models such as walking technicolor theories. We examine the first-order restoration of the chiral symmetry from the point of view of the electroweak phase transition. The strength of the transition is estimated in SU(2) x U(1) gauged linear sigma model by means of the finite temperature effective potential at one-loop with the ring improvement. Even if the mass of the neutral scalar boson corresponding to the Higgs boson is larger than 114 GeV, the first-order transition can be strong enough for the electroweak baryogenesis, as long as the extra massive scalar bosons (required for the linear realization) are kept heavier than the neutral scalar boson. Explicit symmetry breaking terms reduce the strength of the first-order transition, but the transition can remain strongly first-order even when the masses of pseudo Nambu-Goldstone bosons become as large as the current lower bound of direct search experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا