ترغب بنشر مسار تعليمي؟ اضغط هنا

111 - J. Towers , B. P. van Zyl , 2015
In a recent paper [Phys.~Rev.~A {bf 89}, 022503 (2014)], the average density approximation (ADA) was implemented to develop a parameter-free, nonlocal kinetic energy functional to be used in the orbital-free density-functional theory of an inhomogeno us, two-dimensional (2D), Fermi gas. In this work, we provide a detailed comparison of self-consistent calculations within the ADA with the exact results of the Kohn-Sham density-functional theory, and the elementary Thomas-Fermi (TF) approximation. We demonstrate that the ADA for the 2D kinetic energy functional works very well under a wide variety of confinement potentials, even for relatively small particle numbers. Remarkably, the TF approximation for the kinetic energy functional, {em without any gradient corrections}, also yields good agreement with the exact kinetic energy for all confining potentials considered, although at the expense of the spatial and kinetic energy densities exhibiting poor point-wise agreement, particularly near the TF radius. Our findings illustrate that the ADA kinetic energy functional yields accurate results for {em both} the local and global equilibrium properties of an inhomogeneous 2D Fermi gas, without the need for any fitting parameters.
The collective excitations of a zero-temperature, spin-polarized, harmonically trapped, two-dimensional dipolar Fermi gas are examined within the Thomas-Fermi von Weizsacker hydrodynamic theory. We focus on repulsive interactions, and investigate the dependence of the excitation frequencies on the strength of the dipolar interaction and particle number. We find that the mode spectrum can be classified according to bulk modes, whose frequencies are shifted upward as the interaction strength is increased, and an infinite ladder of surface modes, whose frequencies are {em independent} of the interactions in the large particle limit. We argue quite generally that it is the {em local} character of the two-dimensional energy density which is responsible for the insensitivity of surface excitations to the dipolar interaction strength, and not the precise form of the equation of state. This property will not be found for the collective excitations of harmonically trapped, dipolar Fermi gases in one and three dimensions, where the energy density is manifestly nonlocal.
We simulate ultra-cold interacting Bosons in quasi-one-dimensional, incommensurate optical lattices. In the tight-binding limit, these lattices have pseudo-random on-site energies and thus can potentially lead to Anderson localization. We explore the parameter regimes that lead to Anderson localization and investigate the role of repulsive interactions, harmonic confinement and finite temperature. We find that interactions can obscure the exponential localization characteristic of Anderson localization, thus impeding the direct observation of this phenomenon when interactions are present.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا