ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) the COS Science Team has conducted a high signal-to-noise survey of 14 bright QSOs. In a previous paper (Savage et al. 2014) these far-UV spectra were used to discover 14 warm ($T > 10^5$ K) absorbers using a combination of broad Lyalpha and O VI absorptions. A reanalysis of a few of this new class of absorbers using slightly relaxed fitting criteria finds as many as 20 warm absorbers could be present in this sample. A shallow, wide spectroscopic galaxy redshift survey has been conducted around these sight lines to investigate the warm absorber environment, which is found to be spiral-rich galaxy groups or cluster outskirts with radial velocity dispersions of sigma = 250-750 km/s. While 2sigma evidence is presented favoring the hypothesis that these absorptions are associated with the galaxy groups and not with the individual, nearest galaxies, this evidence has considerable systematic uncertainties and is based on a small sample size so it is not entirely conclusive. If the associations are with galaxy groups, the observed frequency of warm absorbers (dN/dz = 3.5-5 per unit redshift) requires them to be very large (~1 Mpc in radius at high covering factor). Most likely these warm absorbers are interface gas clouds whose presence implies the existence of a hotter ($T sim 10^{6.5}$ K), diffuse and probably very massive ($>10^{11}~M_{odot}$) intra-group medium which has yet to be detected directly.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا