ترغب بنشر مسار تعليمي؟ اضغط هنا

The recently discovered coreshine effect can aid in exploring the core properties and in probing the large grain population of the ISM. We discuss the implications of the coreshine detected from the molecular cloud core L1506C in the Taurus filament for the history of the core and the existence of a primitive ISM component of large grains becoming visible in cores. The coreshine surface brightness of L1506C is determined from IRAC Spitzer images at 3.6 micron. We perform grain growth calculations to estimate the grain size distribution in model cores similar in gas density, radius, and turbulent velocity to L1506C. Scattered light intensities at 3.6 micron are calculated for a variety of MRN and grain growth distributions to compare with the observed coreshine. For a core with the overall physical properties of L1506C, no detectable coreshine is predicted for an MRN size distribution. Extending the distribution to grain radii of about 0.65 $mu$m allows to reproduce the observed surface brightness level in scattered light. Assuming the properties of L1506C to be preserved, models for the growth of grains in cores do not yield sufficient scattered light to account for the coreshine within the lifetime of the Taurus complex. Only increasing the core density and the turbulence amplifies the scattered light intensity to a level consistent with the observed coreshine brightness. The grains could be part of primitive omni-present large grain population becoming visible in the densest part of the ISM, could grow under the turbulent dense conditions of former cores, or in L1506C itself. In the later case, L1506C must have passed through a period of larger density and stronger turbulence. This would be consistent with the surprisingly strong depletion usually attributed to high column densities, and with the large-scale outward motion of the core envelope observed today.
(Abriged) In the framework of the Herschel GTKP The earliest phases of star formation, we have imaged B68 between 100 and 500 um. Ancillary (sub)mm data, spectral line maps of the 12/13CO(2-1) transitions as well as a NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from LoS averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent shaped morphology found in the FIR maps. For the first time, we spatially resolve the dust temperature and density distribution of B68. We find T_dust dropping from 16.7 K at the edge to 8.2 K in the centre, which is about 4 K lower than the result of the simple SED fitting approach. N_H peaks at 4.3x10^22 cm^-2 and n_H at 3.4x10^5 cm^-3 in the centre. B68 has a mass of 3.1 M_sun of material with A_K > 0.2 mag for an assumed distance of 150 pc. We detect a compact source in the southeastern trunk, which is also seen in extinction and CO. We find the radial density distribution from the edge of the inner plateau outward to be n_H ~ r^-3.5. Such a steep profile can arise from either or both of the following: external irradiation with a significant UV contribution or the fragmentation of filamentary structures. Our 3D radiative transfer model of an externally irradiated core by an anisotropic ISRF reproduces the crescent morphology. Our CO observations show that B68 is part of a chain of globules in both space and velocity, which may indicate that it was once part of a filament which dispersed. We also resolve a new compact source in the SE trunk and find that it is slightly shifted in centroid velocity from B68, lending qualitative support to core collision scenarios.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا