ترغب بنشر مسار تعليمي؟ اضغط هنا

The possibility of thermal excitation of intrinsic localized modes (ILMs) arising from anharmonicity in ionic perfect crystals is studied numerically for realistic model systems in one and three dimensions. Implications are discussed for an interesti ng high-temperature feature seen in earlier inelastic neutron scattering experiments on single crystal NaI. The general conclusion is that ILM formation energies are far too large for thermal excitation of ILMs to account for the observed feature in a pure crystal.
The Atacama Cosmology Telescope has measured the angular power spectra of microwave fluctuations to arcminute scales at frequencies of 148 and 218 GHz, from three seasons of data. At small scales the fluctuations in the primordial Cosmic Microwave Ba ckground (CMB) become increasingly obscured by extragalactic foregounds and secondary CMB signals. We present results from a nine-parameter model describing these secondary effects, including the thermal and kinematic Sunyaev-Zeldovich (tSZ and kSZ) power; the clustered and Poisson-like power from Cosmic Infrared Background (CIB) sources, and their frequency scaling; the tSZ-CIB correlation coefficient; the extragalactic radio source power; and thermal dust emission from Galactic cirrus in two different regions of the sky. In order to extract cosmological parameters, we describe a likelihood function for the ACT data, fitting this model to the multi-frequency spectra in the multipole range 500<ell<10000. We extend the likelihood to include spectra from the South Pole Telescope at frequencies of 95, 150, and 220 GHz. Accounting for different radio source levels and Galactic cirrus emission, the same model provides an excellent fit to both datasets simultaneously, with chi2/dof= 675/697 for ACT, and 96/107 for SPT. We then use the multi-frequency likelihood to estimate the CMB power spectrum from ACT in bandpowers, marginalizing over the secondary parameters. This provides a simplified `CMB-only likelihood in the range 500<ell<3500 for use in cosmological parameter estimation.
We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg^2 with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measur es fluctuations at scales 500<l<10000. We fit a model for the lensed CMB, Sunyaev-Zeldovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. The power from thermal and kinetic SZ at 148 GHz is estimated to be B_3000 = 6.8+-2.9 uK^2, where B_l=l(l+1)C_l/2pi. We estimate primary cosmological parameters from the 148 GHz spectrum, marginalizing over SZ and source power. The LCDM cosmological model is a good fit to the data, and LCDM parameters estimated from ACT+WMAP are consistent with the 7-year WMAP limits, with scale invariant n_s = 1 excluded at 99.7% CL (3sigma). A model with no CMB lensing is disfavored at 2.8sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6sigma detection of primordial helium, with Y_P = 0.313+-0.044, and a 4sigma detection of relativistic species, assumed to be neutrinos, with Neff = 5.3+-1.3 (4.6+-0.8 with BAO+H0 data). From the CMB alone the running of the spectral index is constrained to be dn/dlnk = -0.034 +- 0.018, the limit on the tensor-to-scalar ratio is r<0.25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension Gmu<1.6 times 10^-7 (95% CL).
Inelastic neutron measurements of the high-temperature lattice excitations in NaI show that in thermal equilibrium at 555 K an intrinsic mode, localized in three dimensions, occurs at a single frequency near the center of the spectral phonon gap, pol arized along [111]. At higher temperatures the intrinsic localized mode gains intensity. Higher energy inelastic neutron and x-ray scattering measurements on a room-temperature NaI crystal indicate that the creation energy of the ground state of the intrinsic localized mode is 299 meV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا