ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron scattering experiments on a polycrystalline sample of the frustrated pyrochlore magnet Tb2Ti2O7, which does not show any magnetic order down to 50 mK, have revealed that it shows condensation behavior below 0.4 K from a thermally fluctuating paramagnetic state to a spin-liquid ground-state with quantum spin fluctuations. Energy spectra change from quasielastic scattering to a continuum with a double-peak structure at energies of 0 and 0.8 K in the spin-liquid state. Specific heat shows an anomaly at the crossover temperature.
We have performed magnetic susceptibility and neutron scattering measurements on polycrystalline Ag-In-RE (RE: rare-earth) 1/1 approximants. In the magnetic susceptibility measurements, for most of the RE elements, inverse susceptibility shows linear behaviour in a wide temperature range, confirming well localized isotropic moments for the RE$^{3+}$ ions. Exceptionally for the light RE elements, such as Ce and Pr, non-linear behaviour was observed, possibly due to significant crystalline field splitting or valence fluctuation. For RE = Tb, the susceptibility measurement clearly shows a bifurcation of the field-cooled and zero-field-cooled susceptibility at $T_{rm f} = 3.7$~K, suggesting a spin-glass-like freezing. On the other hand, neutron scattering measurements detect significant development of short-range antiferromagnetic spin correlations in elastic channel, which accompanied by a broad peak at $hbaromega = 4$~meV in inelastic scattering spectrum. These features have striking similarity to those in the Zn-Mg-Tb quasicrystals, suggesting that the short-range spin freezing behaviour is due to local high symmetry clusters commonly seen in both the systems.
When the mass difference between the lightest slepton and the lightest neutralino is smaller than the tau mass, the lifetime of the lightest slepton in the constrained Minimal Supersymmetric Standard Model (MSSM) increases in many orders of magnitude with respect to typical lifetimes of other supersymmetric particles. In a general MSSM, the lifetime of the lightest slepton is inversely proportional to the square of the intergenerational mixing in the slepton mass matrices. Such a long-lived slepton would produce a distinctive signature at LHC and a measurement of its lifetime would be relatively simple. Therefore, the long-lived slepton scenario offers an excellent opportunity to study lepton flavour violation at ATLAS and CMS detectors in the LHC and an improvement of the leptonic mass insertion bounds by more than five orders of magnitude would be possible.
Quantum-critical behavior of the itinerant electron antiferromagnet (V0.9Ti0.1)2O3 has been studied by single-crystal neutron scattering. By directly observing antiferromagnetic spin fluctuations in the paramagnetic phase, we have shown that the char acteristic energy depends on temperature as c_1 + c_2 T^{3/2}, where c_1 and c_2 are constants. This T^{3/2} dependence demonstrates that the present strongly correlated d-electron antiferromagnet clearly shows the criticality of the spin-density-wave quantum phase transition in three space dimensions.
Spin correlations and fluctuations in the 3d-transition-metal-based icosahedral quasicrystal Zn-Fe-Sc have been investigated by neutron scattering using polycrystalline samples. Magnetic diffuse scattering has been observed in the elastic experiment at low temperatures, indicating development of static short-range-spin correlations. In addition, the inelastic scattering experiment detects a $Q$-independent quasielastic signal ascribed to single-site relaxational spin fluctuations. Above the macroscopic freezing temperature $T_{rm f} simeq 7$ K, the spin relaxation rate shows Arrhenius-type behavior, indicating thermally activated relaxation process. In contrast, the relaxation rate remains finite even at the lowest temperature, suggesting a certain quantum origin for the spin fluctuations below $T_{rm f}$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا