ترغب بنشر مسار تعليمي؟ اضغط هنا

Outflows arising from very young stars affect their surroundings and influence the star formation in the parental core. Multiple molecular outflows and Herbig-Haro (HH) objects have been observed in Orion, many of them originating from the embedded m assive star-forming region known as OMC1-S. The detection of the outflow driving sources is commonly difficult, because they are still hidden behind large extinction, preventing their direct observation at optical and even near and mid-IR wavelengths. With the aim of improving the identification of the driving sources of the multiple outflows detected in OMC1-S, we used the catalog provided by deep X-ray observations, which have unveiled the very embedded population of pre-main sequence stars. We compared the position of stars observed by the Chandra Orion Ultra Deep project (COUP) in OMC1-S with the morphology of the molecular outflows and the directions of measured proper motions of HH optical objects. We find that 6 out of 7 molecular outflows reported in OMC1-S (detection rate of 86 %) have an extincted X-ray COUP star located at the expected position of the driving source. In several cases, X-rays detected the possible driving sources for the first time. This clustered embedded population revealed by Chandra is very young, with an estimated average age of few 10^{5} yr. It is also likely responsible for the multiple HH objects, which are the optical correspondence of flows arising from the cloud. We show that the molecular outflows driven by the members of the OMC1-S cluster can account for the observed turbulence at core-scales and regulate the star formation efficiency. We discuss the effects of outflow feedback in the formation of massive stars, concluding that the injected turbulence in OMC1-S is compatible with a competitive accretion scenario.
According to theory, high energy emission from the coronae of cool stars can severely erode the atmosphere of orbiting planets. To test the long term effects of the erosion we study a large sample of planet-hosting stars observed in X-rays. The resul ts reveal that massive planets (Mp sin i > 1.5 Mj) may survive only if exposed to low accumulated coronal radiation. The planet HD 209458 b might have lost more than 1 Mj already, and other cases, like tau Boo b, could be losing mass at a rate of 3.4 Earth masses per Gyr. The strongest erosive effects would take place during the first stages of the stellar life, when the faster rotation generates more energetic coronal radiation. The planets with higher density seem to resist better the radiation effects, as foreseen by models. Current models need to be improved to explain the observed distribution of planetary masses with the coronal radiation received.
Chemical abundances in solar-type stars are a much debated topic. Planet-hosting stars are known to be metal-rich, but whether or not this peculiarity applies also to the chemical composition of the outer stellar atmospheres is still to be clarified. More in general, coronal and photospheric abundances in late-type stars appear to be different in many cases, but understanding how chemical stratification effects work in stellar atmospheres requires an observational base larger than currently available. We obtained XMM-Newton high-resolution X-ray spectra of Tau Bootis, a well known nearby star with a Jovian-mass close-in planet. We analyzed these data with the aim to perform a detailed line-based emission measure analysis and derive the abundances of individual elements in the corona with two different methods applied independently. We compared the coronal abundances of Tau Bootis with published photospheric abundances based on high-resolution optical spectra and with those of other late-type stars with different magnetic activity levels, including the Sun. We find that the two methods provide consistent results within the statistical uncertainties for both the emission measure distribution of the hot plasma and for the coronal abundances, with discrepancies at the 2-sigma level limited to the amount of plasma at temperatures of 3-4 MK and to the O and Ni abundances. In both cases, the elements for which both coronal and photospheric measurements are available (C, N, O, Si, Fe, and Ni) result systematically less abundant in the corona by a factor 3 or more, with the exception of the coronal Ni abundance, which is similar to the photospheric value. Comparison with other late-type stars of similar activity level shows that these coronal/photospheric abundance ratios are peculiar to Tau Bootis and possibly related to the characteristic over-metallicity of this planet-hosting star.
119 - L. Prisinzano 2010
Different environmental conditions can play a crucial role in determining final products of the star formation process and in this context, less favorable activities of star formation are expected in the external regions of our Galaxy. We studied the properties of the young open cluster NGC 1893 located about 12 Kpc from the galactic center, to investigate how different physical conditions can affect the process of star formation. By adopting a multiwavelength approach, we compiled a catalog extending from X-rays to NIR data to derive the cluster membership. In addition, optical and NIR photometric properties are used to evaluate the cluster parameters. We find 415 diskless candidate members plus 1061 young stellar objects with a circumstellar disk or class II candidate members, 125 of which are also Halpha emitters. Considering the diskless candidate members, we find that the cluster distance is 3.6$pm$0.2 kpc and the mean interstellar reddening is E(B-V)=0.6$pm$0.1 with evidence of differential reddening in the whole surveyed region. NGC 1893 contains a conspicuous population of pre-main sequence stars together with the well studied main sequence cluster population; we found a disk fraction of about 70% similar to that found in clusters of similar age in the solar neighbour and then, despite expected unfavorable conditions for star formation, we conclude that very rich young clusters can form also in the outer regions of our Galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا