ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on a calculation of cross sections for charged-current quasielastic antineutrino scattering off $^{12}$C in the energy range of interest for the MiniBooNE experiment. We adopt the impulse approximation (IA) and use the nonrelativistic conti nuum random phase approximation (CRPA) to model the nuclear dynamics. An effective nucleon-nucleon interaction of the Skyrme type is used. We compare our results with the recent MiniBooNE antineutrino cross-section data and confront them with alternate calculations. The CRPA predictions reproduce the gross features of the shape of the measured double-differential cross sections. The CRPA cross sections are typically larger than those of other reported IA calculations but tend to underestimate the magnitude of the MiniBooNE data. We observe that an enhancement of the nucleon axial mass in CRPA calculations is an effective way of improving on the description of the shape and magnitude of the double-differential cross sections. The rescaling of $M_{A}$ is illustrated to affect the shape of the double-differential cross sections differently than multinucleon effects beyond the IA.
The Regge-plus-resonance (RPR) framework for kaon photoproduction on the proton and the neutron is an economical single-channel model with very few parameters. Not only does the RPR model allow one to extract resonance information from the data, it h as predictive power. As an example we show that the RPR model makes fair predictions for the $p(e,eK^{+})Lambda$ and the $n(gamma,K^{+})Sigma ^{-}$ observables starting from amplitudes optimized for the reaction $p(gamma, K ^{+})Lambda$ and $p(gamma,K^{+})Sigma ^{0}$ respectively.
We present predictions for n(gamma,K+)Sigma- differential cross sections and photon-beam asymmetries and compare them to recent LEPS data. We adapt a Regge-plus-resonance (RPR) model developed to describe photoinduced and electroinduced kaon producti on off protons. The non-resonant contributions to the amplitude are modelled in terms of K+(494) and K*+(892) Regge-trajectory exchange. This amplitude is supplemented with a selection of s-channel resonance diagrams. The three Regge-model parameters of the n(gamma,K+)Sigma- amplitude are derived from the ones fitted to proton data through SU(2) isospin considerations. A fair description of the n(gamma,K+)Sigma- data is realized, which demonstrates the Regge models robustness and predictive power. Conversion of the resonances couplings from the proton to the neutron is more challenging, as it requires knowledge of the photocoupling helicity amplitudes. We illustrate how the uncertainties of the helicity amplitudes propagate and heavily restrain the predictive power of the RPR and isobar models for kaon production off neutron targets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا