ترغب بنشر مسار تعليمي؟ اضغط هنا

134 - B. Stelzer 2008
The interpretation of X-ray detections from Herbig Ae/Be stars is disputed as it is not clear if these intermediate-mass pre-main sequence stars are able to drive a dynamo and ensuing phenomena of magnetic activity. Alternative X-ray production mecha nisms, related to stellar winds, star-disk magnetospheres, or unresolved late-type T Tauri star companions have been proposed. In a series of papers we have been investigating high-resolution X-ray Chandra images of Herbig Ae/Be and main-sequence B-type stars to test the T Tauri hypothesis by spatially resolving known visual companions from the primaries. Here we report on six as yet unpublished Chandra exposures from our X-ray survey of Herbig stars. The target list comprises six Herbig stars with known cool companions, and three further A/B-type stars that are serendipitously in the Chandra field-of-view. In this sample we record a detection rate of 100%, i.e. all A/B-type stars display X-ray emission at levels of log(L_x/L_bol) ~ -5...-7. The analysis of hardness ratios confirms that HAeBes have hotter and/or more absorbed X-ray emitting plasma than more evolved B-type stars. Radiative winds are ruled out as exclusive emission mechanism on basis of the high X-ray temperatures. Confirming earlier results, the X-ray properties of Herbig Ae/Be stars are not vastly different from those of their late-type companion stars (if such are known). The diagnostics provided by the presently available data leave open if the hard X-ray emission of Herbig stars is due to young age or indicative of further coronally active low-mass companion stars. In the latter case, our detection statistics imply a high fraction of higher-order multiple systems among Herbig stars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا