ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral energy distributions (SEDs) of the central few tens of parsec region of some of the nearest, most well studied, active galactic nuclei (AGN) are presented. These genuine AGN-core SEDs, mostly from Seyfert galaxies, are characterised by two m ain features: an IR bump with the maximum in the 2-10 micron range, and an increasing X-ray spectrum in the 1 to ~200 keV region. These dominant features are common to Seyfert type 1 and 2 objects alike. Type 2 AGN exhibit a sharp drop shortward of 2 micron, with the optical to UV region being fully absorbed, while type 1s show instead a gentle 2 micron drop ensued by a secondary, partially-absorbed optical to UV emission bump. Assuming the bulk of optical to UV photons generated in these AGN are reprocessed by dust and re-emitted in the IR in an isotropic manner, the IR bump luminosity represents >70% of the total energy output in these objects while the high energies above 20 keV are the second energetically important contribution. Galaxies selected by their warm IR colours, i.e. presenting a relatively-flat flux distribution in the 12 to 60 micron range have often being classified as AGN. The results from these high spatial resolution SEDs question this criterion as a general rule. It is found that the intrinsic shape of the IR SED of an AGN and inferred bolometric luminosity largely depart from those derived from large aperture data. AGN luminosities can be overestimated by up to two orders of magnitude if relying on IR satellite data. We find these differences to be critical for AGN luminosities below or about 10^{44} erg/s. Above this limit, AGNs tend to dominate the light of their host galaxy regardless of the aperture size used. We tentatively mark this luminosity as a threshold to identify galaxy-light- vs AGN- dominated objects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا