ترغب بنشر مسار تعليمي؟ اضغط هنا

145 - S.V. Jeffers 2013
Theoretical predictions suggest that the distribution of planets in very young stars could be very different to that typically observed in Gyr old systems that are the current focus of radial velocity surveys. However, the detection of planets around young stars is hampered by the increased stellar activity associated with young stars, the signatures of which can bias the detection of planets. In this paper we place realistic limitations on the possibilities for detecting planets around young active G and K dwarfs. The models of stellar activity based on tomographic imaging of the G dwarf HD 141943 and the K1 dwarf AB Dor and also include contributions from plage and many small random starspots. Our results show that the increased stellar activity levels present on young Solar-type stars strongly impacts the detection of Earth-mass and Jupiter mass planets and that the degree of activity jitter is directly correlated with stellar vsinis. We also show that for G and K dwarfs, the distribution of activity in individual stars is more important than the differences in induced radial velocities as a function of spectral type. We conclude that Jupiter mass planets can be detected close-in around fast-rotating young active stars, Neptune-mass planets around moderate rotators and that Super-Earths are only detectable around very slowly rotating stars. The effects of an increase in stellar activity jitter by observing younger stars can be compensated for by extending the observational base-line to at least 100 epochs.
We present Doppler imaging and a Balmer line analysis of the weak-line T Tauri star TWA 17. Spectra were taken in 2006 with the UCL Echelle Spectrograph on the Anglo-Australian Telescope. Using least-squares deconvolution to improve the effective sig nal-to-noise ratio we produced a Doppler map of the surface spot distribution. This shows similar features to maps of other rapidly rotating T Tauri stars, i.e. a polar spot with more spots extending out of it down to the equator. In addition to the photospheric variability, the chromospheric variability was studied using the Balmer emission. The mean H-alpha profile has a narrow component consistent with rotational broadening and a broad component extending out to +/-220 km/s. The variability in H-alpha suggests that the chromosphere has at least one slingshot prominence 3 stellar radii above the surface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا