ترغب بنشر مسار تعليمي؟ اضغط هنا

A reflection model with three components, a specular spike, a specular lobe and a diffuse lobe is discussed. This model was successfully applied to describe reflection of xenon scintillation light (175 nm) by PTFE and other fluoropolymers and can be used for Monte Carlo simulation and analysis of scintillation detectors. The measured data favors a Trowbridge-Reitz distribution function of ellipsoidal micro-surfaces. The intensity of the coherent reflection increases with increasing angle of incidence, as expected, since the surface appears smoother at grazing angles. The total reflectance obtained for PTFE is about 70% for VUV light at normal incidence in vacuum and estimated to be up to 100% in contact with liquid xenon.
Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical in sulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet wavelength region (175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Fluoropolymers, namely ETFE, FEP and PFA were also measured.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا