ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the evolution of the spin resonance in CeCoIn$_{5}$ as a function of magnetic field and lanthanum substitution. In both cases, the resonance peak position shifts to lower energy and the lineshape broadens. For La doping, it is found that th e ratio $Omega_{res}/k_{B}T_{c}$ is almost constant as a function of $x$. Under magnetic field the decrease of the excitation energy is similar for H// [1,$bar{1}$,0] and [1,1,1] and faster than the decrease of $T_{c}(H)$. The Zeeman effect found for the field applied along [1,$bar{1}$,0] corresponds to the ground state magnetic moment.
The influence of La non magnetic impurities on the spin dynamics of CeCoIn$_{5}$ was studied by inelastic neutron scattering. In La-substituted systems, the spin resonance peak (observed at $Omega_{res}=0.55 meV$ in the pure system) is shifted to low er energies but the ratio $Omega_{res}/k_{B}T_{c}$ remains unchanged. The excitation broadens till it reaches 0.3 meV equal to the value of the quasi-elastic signal in the normal state. The evolution of La substitution is compared with the evolution of the magnetic resonance in Ni and Zn substituted YBa$_{2}$Cu$_{3}$O$_{7}$.
The magnetic excitation spectrum of the unconventional ferromagnet CeRh$_{3}$B$_{2}$ was measured by inelastic neutron scattering on single crystal sample in the magnetically ordered and paramagnetic phases. The spin-wave excitation spectrum evidence s high exchange interaction along the c-axis about two orders of magnitude higher than the ones in the basal plane of the hexagonal structure. Both strong out of plane and small in plane anisotropies are found. This latter point confirms that considering the $J$=5/2 multiplet alone is not adequate for describing the ground state of CeRh$_{3}$B$_{2}$. Quasielastic scattering measured above $T_{Curie}$ is also strongly anisotropic between the basal plane and the c-axis and suggests localized magnetism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا