ترغب بنشر مسار تعليمي؟ اضغط هنا

We present deep J and Ks band photometry of 20 high redshift galaxy clusters between z=0.8-1.5, 19 of which are observed with the MOIRCS instrument on the Subaru Telescope. By using near-infrared light as a proxy for stellar mass we find the surprisi ng result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at ~9e11MSol since z~1.5. We investigate the effect on this result of differing star formation histories generated by three well known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter haloes, which predict a more protracted mass build up over a Hubble time. We discuss however that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.
We investigate the evolution of the optical and near-infrared colour-magnitude relation in an homogeneous sample of massive clusters from z = 1 to the present epoch. By comparing deep Hubble Space Telescope ACS imaging of X-ray selected MACS survey c lusters at z = 0.5 to the similarly selected LARCS sample at z = 0.1 we find that the rest-frame d(U -V)/dV slope of the colour-magnitude relation evolves with redshift which we attribute to the build up of the red sequence over time. This rest frame slope evolution is not adequately reproduced by that predicted from semi-analytic models based on the Millennium Simulation despite a prescription for the build up of the red sequence by in-falling galaxies, strangulation. We observe no strong correlation between this slope and the cluster environment at a given redshift demonstrating that the observed evolution is not due to a secondary correlation. Also presented are near-infrared UKIRT WFCAM observations of the LARCS clusters which confirm and improve on the the result from Stott et al. (2007) finding that there has been a two-fold increase in faint MV > -20 galaxies on the red sequence since z = 0.5 to a significance of 5sigma.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا