ترغب بنشر مسار تعليمي؟ اضغط هنا

135 - J. P. Hague 2012
A theory is presented for the modification of bandgaps in atomically thin boron nitride (BN) by attractive interactions mediated through phonons in a polarizable substrate, or in the BN plane. Gap equations are solved, and gap enhancements are found to range up to 70% for dimensionless electron-phonon coupling lambda=1, indicating that a proportion of the measured BN bandgap may have a phonon origin.
309 - J. P. Hague , C. MacCormick 2011
In condensed matter, it is often difficult to untangle the effects of competing interactions, and this is especially problematic for superconductors. Quantum simulators may help: here we show how exploiting the properties of highly excited Rydberg st ates of cold fermionic atoms in a bilayer lattice can simulate electron-phonon interactions in the presence of strong correlation - a scenario found in many unconventional superconductors. We discuss the core features of the simulator, and use numerics to compare with condensed matter analogues. Finally, we illustrate how to achieve a practical, tunable implementation of the simulation using painted spot potentials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا