ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the dynamics of a dilute Bose gas at zero temperature following a sudden quench of the scattering length from a noninteracting Bose condensate to unitarity (infinite scattering length). We apply three complementary approaches to understand t he momentum distribution and loss rates. First, using a time-dependent variational ansatz for the many-body state, we calculate the dynamics of the momentum distribution. Second, we demonstrate that, at short times and large momenta compared to those set by the density, the physics can be well understood within a simple, analytic two-body model. We derive a quantitative prediction for the evolution of Tans contact, which increases linearly at short times. We also study the three-body losses at finite densities. Consistent with experiments, we observe lifetimes which are long compared to the dynamics of large momentum modes.
In this paper we discuss the recent discovery of the universality of the three-body parameter (3BP) from Efimov physics. This new result was identified by recent experimental observations in ultracold quantum gases where the value of the s-wave scatt ering length, $a=a_-$, at which the first Efimov resonance is created was found to be nearly the same for a range of atomic species --- if scaled as $a_-/r_{rm vdW}$, where $r_{rm vdW}$ is the van der Waals length. Here, we discuss some of the physical principles related to these observations that emerge from solving the three-body problem with van der Waals interactions in the hyperspherical formalism. We also demonstrate the strong three-body multichannel nature of the problem and the importance of properly accounting for nonadiabatic effects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا