ترغب بنشر مسار تعليمي؟ اضغط هنا

We present for the first time phase-resolved UV spectroscopy of an Of?p star, namely, HD 191612. The observations were acquired with the Space Telescope Imaging Spectrograph (STIS) on-board the Hubble Space Telescope (HST). We report the variability observed in the main photospheric and wind features and compare the results with previous findings for the Of?p star HD 108. We show that UV line strengths, H(alpha), and longitudinal magnetic field, vary coherently according to the rotational period (P = 537.6d), providing additional support for the magnetic oblique rotator scenario. The stellar and wind parameters of HD 191612 are obtained based on NLTE expanding atmosphere models. The peculiar wind line profile variations revealed by the new STIS data - not reproduced by 1D atmosphere models - are addressed through non-spherical MHD simulations coupled with radiative transfer. The basic aspects of the UV variability observed are explained and the structure of the dynamical magnetosphere of HD 191612 is discussed.
The O9IV star HD 57682, discovered to be magnetic within the context of the MiMeS survey in 2009, is one of only eight convincingly detected magnetic O-type stars. Among this select group, it stands out due to its sharp-lined photospheric spectrum. S ince its discovery, the MiMeS Collaboration has continued to obtain spectroscopic and magnetic observations in order to refine our knowledge of its magnetic field strength and geometry, rotational period, and spectral properties and variability. In this paper we report new ESPaDOnS spectropolarimetric observations of HD 57682, which are combined with previously published ESPaDOnS data and archival H{alpha} spectroscopy. This dataset is used to determine the rotational period (63.5708 pm 0.0057 d), refine the longitudinal magnetic field variation and magnetic geometry (dipole surface field strength of 880pm50 G and magnetic obliquity of 79pm4circ as measured from the magnetic longitudinal field variations, assuming an inclination of 60circ), and examine the phase variation of various lines. In particular, we demonstrate that the H{alpha} equivalent width undergoes a double-wave variation during a single rotation of the star, consistent with the derived magnetic geometry. We group the variable lines into two classes: those that, like H{alpha}, exhibit non-sinusoidal variability, often with multiple maxima during the rotation cycle, and those that vary essentially sinusoidally. Based on our modelling of the H{alpha} emission, we show that the variability is consistent with emission being generated from an optically thick, flattened distribution of magnetically-confined plasma that is roughly distributed about the magnetic equator. Finally, we discuss our findings in the magnetospheric framework proposed in our earlier study.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا