ترغب بنشر مسار تعليمي؟ اضغط هنا

216 - J. Mur-Petit , R. A. Molina 2015
We perform a comprehensive analysis of the spectral statistics of the molecular resonances in $^{166}$Er and $^{168}$Er observed in recent ultracold collision experiments [Frisch et al., Nature {bf 507}, 475 (2014)] with the aim of determining the ch aoticity of this system. We calculate different independent statistical properties to check their degree of agreement with random matrix theory (RMT), and analyze if they are consistent with the possibility of having missing resonances. The analysis of the short-range fluctuations as a function of the magnetic field points to a steady increase of chaoticity until $B sim 30$ G. The repulsion parameter decreases for higher magnetic fields, an effect that can be interpreted as due to missing resonances. The analysis of long-range fluctuations allows us to be more quantitative and estimate a $20-25%$ fraction of missing levels. Finally, a study of the distribution of resonance widths provides additional evidence supporting missing resonances of small width compared with the experimental magnetic field resolution. We conclude that further measurements with increased resolution will be necessary to give a final answer to the problem of missing resonances and the agreement with RMT.
In this work we provide a general methodology to directly measure topological order in cold atom systems. As an application we propose the realisation of a characteristic topological model, introduced by Haldane, using optical lattices loaded with fe rmionic atoms in two internal states. We demonstrate that time-of-flight measurements directly reveal the topological order of the system in the form of momentum space skyrmions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا