ترغب بنشر مسار تعليمي؟ اضغط هنا

We utilize a glass-like structural transition in order to induce a Mott metal-insulator transition in the quasi-two-dimensional organic charge-transfer salt $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br. In this material, the terminal ethylene groups of the BEDT-TTF molecules can adopt two different structural orientations within the crystal structure, namely eclipsed (E) and staggered (S) with the relative orientation of the outer C$-$C bonds being parallel and canted, respectively. These two conformations are thermally disordered at room temperature and undergo a glass-like ordering transition at $T_g sim 75,$K. When cooling through $T_g$, a small fraction that depends on the cooling rate remains frozen in the S configuration, which is of slightly higher energy, corresponding to a controllable degree of structural disorder. We demonstrate that, when thermally coupled to a low-temperature heat bath, a pulsed heating current through the sample causes a very fast relaxation with cooling rates at $T_g$ of the order of several 1000$,$K/min. The freezing of the structural degrees of freedom causes a decrease of the electronic bandwidth $W$ with increasing cooling rate, and hence a Mott metal-insulator transition as the system crosses the critical ratio $(W/U)_{c}$ of bandwidth to on-site Coulomb repulsion $U$. Due to the glassy character of the transition, the effect is persistent below $T_g$ and can be reversibly repeated by melting the frozen configuration upon warming above $T_g$. Both by exploiting the characteristics of slowly-changing relaxation times close to this temperature and by controlling the heating power, the materials can be fine-tuned across the Mott transition. A simple model allows for an estimate of the energy difference between the E and S state as well as the accompanying degree of frozen disorder in the population of the two orientations.
The recently proposed multiferroic state of the charge-transfer salt {kappa}-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl [P. Lunkenheimer et al., Nature Mater., vol. 11, pp. 755-758, Sept. 2012] has been studied by dc-conductivity, magnetic susceptibility and meas urements of the dielectric constant on various, differently prepared single crystals. In the majority of crystals we confirm the existence of an order-disorder-type ferroelectric state which coincides with antiferromagnetic order. This phenomenology rules out scenarios which consider an inhomogeneous, short-range-ordered ferroelectric state. Measurements of the dielectric constant and the magnetic susceptibility on the same crystals reveal that both transitions lie very close to each other or even collapse, indicating that both types of order are intimately coupled to each other. We address issues of the frequency dependence of the dielectric constant {epsilon} and the dielectric loss {epsilon} and discuss sample-to-sample variations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا