ترغب بنشر مسار تعليمي؟ اضغط هنا

130 - I. Chiu , J. Mohr , M. Mcdonald 2014
We study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift $z=0.9$ and median mass $M_{500}=6times10^{14}M_{odot}$. We estimate stellar mass es for each cluster and BCG using six photometric bands spanning the range from the ultraviolet to the near-infrared observed with the VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton X-ray observations, and the virial masses are derived from the SPT Sunyaev-Zeldovich Effect signature. At $z=0.9$ the BCG mass $M_{star}^{textrm{BCG}}$ constitutes $0.12pm0.01$% of the halo mass for a $6times10^{14}M_{odot}$ cluster, and this fraction falls as $M_{500}^{-0.58pm0.07}$. The cluster stellar mass function has a characteristic mass $M_{0}=10^{11.0pm0.1}M_{odot}$, and the number of galaxies per unit mass in clusters is larger than in the field by a factor $1.65pm0.2$. Both results are consistent with measurements on group scales and at lower redshift. We combine our SPT sample with previously published samples at low redshift that we correct to a common initial mass function and for systematic differences in virial masses. We then explore mass and redshift trends in the stellar fraction (fstar), the ICM fraction (fICM), the cold baryon fraction (fc) and the baryon fraction (fb). At a pivot mass of $6times10^{14}M_{odot}$ and redshift $z=0.9$, the characteristic values are fstar=$1.1pm0.1$%, fICM=$9.6pm0.5$%, fc=$10.4pm1.2$% and fb=$10.7pm0.6$%. These fractions all vary with cluster mass at high significance, indicating that higher mass clusters have lower fstar and fc and higher fICM and fb. When accounting for a 15% systematic virial mass uncertainty, there is no statistically significant redshift trend at fixed mass in these baryon fractions. (abridged)
132 - J. Liu , J. Mohr , A. Saro 2014
(Abridged) We use 95, 150, and 220GHz observations from the SPT to examine the SZE signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg^2 of the XMM-BCS. These systems extend to redshift z=1.02, have characteristic masses ~3x lower than clusters detected directly in the SPT data and probe the SZE signal to the lowest X-ray luminosities (>10^42 erg s^-1) yet. We develop an analysis tool that combines the SZE information for the full ensemble of X-ray-selected clusters. Using X-ray luminosity as a mass proxy, we extract selection-bias corrected constraints on the SZE significance- and Y_500-mass relations. The SZE significance- mass relation is in good agreement with an extrapolation of the relation obtained from high mass clusters. However, the fit to the Y_500-mass relation at low masses, while in good agreement with the extrapolation from high mass SPT clusters, is in tension at 2.8 sigma with the constraints from the Planck sample. We examine the tension with the Planck relation, discussing sample differences and biases that could contribute. We also present an analysis of the radio galaxy point source population in this ensemble of X-ray selected systems. We find 18 of our systems have 843 MHz SUMSS sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8$sigma$ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17+-9) per cent in this sample of low mass systems.
68 - S. Bocquet , A. Saro , J. J. Mohr 2014
We present a velocity dispersion-based mass calibration of the South Pole Telescope Sunyaev-Zeldovich effect survey (SPT-SZ) galaxy cluster sample. Using a homogeneously selected sample of 100 cluster candidates from 720 deg2 of the survey along with 63 velocity dispersion ($sigma_v$) and 16 X-ray Yx measurements of sample clusters, we simultaneously calibrate the mass-observable relation and constrain cosmological parameters. The calibrations using $sigma_v$ and Yx are consistent at the $0.6sigma$ level, with the $sigma_v$ calibration preferring ~16% higher masses. We use the full cluster dataset to measure $sigma_8(Omega_ m/0.27)^{0.3}=0.809pm0.036$. The SPT cluster abundance is lower than preferred by either the WMAP9 or Planck+WMAP9 polarization (WP) data, but assuming the sum of the neutrino masses is $sum m_ u=0.06$ eV, we find the datasets to be consistent at the 1.0$sigma$ level for WMAP9 and 1.5$sigma$ for Planck+WP. Allowing for larger $sum m_ u$ further reconciles the results. When we combine the cluster and Planck+WP datasets with BAO and SNIa, the preferred cluster masses are $1.9sigma$ higher than the Yx calibration and $0.8sigma$ higher than the $sigma_v$ calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness of fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the multi-probe dataset, we measure $Omega_ m=0.299pm0.009$ and $sigma_8=0.829pm0.011$. Within a $ u$CDM model we find $sum m_ u = 0.148pm0.081$ eV. We present a consistency test of the cosmic growth rate. Allowing both the growth index $gamma$ and the dark energy equation of state parameter $w$ to vary, we find $gamma=0.73pm0.28$ and $w=-1.007pm0.065$, demonstrating that the expansion and the growth histories are consistent with a LCDM model ($gamma=0.55; ,w=-1$).
The Dark Energy Survey (DES) is a 5000 deg2 grizY survey reaching characteristic photometric depths of 24th magnitude (10 sigma) and enabling accurate photometry and morphology of objects ten times fainter than in SDSS. Preparations for DES have incl uded building a dedicated 3 deg2 CCD camera (DECam), upgrading the existing CTIO Blanco 4m telescope and developing a new high performance computing (HPC) enabled data management system (DESDM). The DESDM system will be used for processing, calibrating and serving the DES data. The total data volumes are high (~2PB), and so considerable effort has gone into designing an automated processing and quality control system. Special purpose image detrending and photometric calibration codes have been developed to meet the data quality requirements, while survey astrometric calibration, coaddition and cataloging rely on new extensions of the AstrOmatic codes which now include tools for PSF modeling, PSF homogenization, PSF corrected model fitting cataloging and joint model fitting across multiple input images. The DESDM system has been deployed on dedicated development clusters and HPC systems in the US and Germany. An extensive program of testing with small rapid turn-around and larger campaign simulated datasets has been carried out. The system has also been tested on large real datasets, including Blanco Cosmology Survey data from the Mosaic2 camera. In Fall 2012 the DESDM system will be used for DECam commissioning, and, thereafter, the system will go into full science operations.
The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of $sim$80 deg$^2$ of the southern sky located in two fields: ($alpha$,$delta$)= (5 hr, $-55^{circ}$) and (23 hr, $-55^{circ}$). The survey was carried out between 2005 and 2008 in $griz$ bands with the Mosaic2 imager on the Blanco 4m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zeldovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF corrected model fitting photometry for all detected objects. The median 10$sigma$ galaxy (point source) depths over the survey in $griz$ are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is $sim45$ milli-arcsec. We calibrate our absolute photometry using the stellar locus in $grizJ$ bands, and thus our absolute photometric scale derives from 2MASS which has $sim2$% accuracy. The scatter of stars about the stellar locus indicates a systematics floor in the relative stellar photometric scatter in $griz$ that is $sim$1.9%, $sim$2.2%, $sim$2.7% and$sim$2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier {tt spread_model} produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter $delta z/(1+z)=0.054$ with an outlier fraction $eta<5$% to $zsim1$. We highlight some selected science results to date and provide a full description of the released data products.
We present a galaxy catalog simulator which turns N-body simulations with subhalos into multiband photometric mocks. The simulator assigns galaxy properties to each subhalo to reproduce the observed cluster galaxy halo occupation distribution, the ra dial and mass dependent variation in fractions of blue galaxies, the luminosity functions in clusters and the field, and the red-sequence in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Field galaxies are sampled from existing multiband photometric surveys using derived galaxy photometric redshifts. Parametrizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allows us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. We present an application of the catalog simulator to characterize the selection function of a galaxy cluster finder that utilizes the cluster red-sequence galaxy clustering on the sky, in terms of completeness and contamination. We estimate systematic uncertainties due to the observational uncertainties on our simulator parameters in determining the selection function using five different sets of modified catalogs. Our estimates indicate that these uncertainties are at the $le15$% level with current observational constraints on cluster galaxy populations and their evolution. In addition, we examine the $B_{gc}$ parameter as an optical mass indicator and measure the intrinsic scatter of the $B_{gc}$--mass relation to be approximately log normal with $sigma_{log_{10}M}sim0.25$. Finally, we present tests of a red sequence overdensity redshift estimator using both simulated and real data, showing that it delivers redshifts for massive clusters with $sim$2% accuracy out to redshifts $zsim0.5$ with SDSS-like datasets.
The Dark Energy Survey Data Management (DESDM) system will process and archive the data from the Dark Energy Survey (DES) over the five year period of operation. This paper focuses on a new adaptable processing framework developed to perform highly a utomated, high performance data parallel processing. The new processing framework has been used to process 45 nights of simulated DECam supernova imaging data, and was extensively used in the DES Data Challenge 4, where it was used to process thousands of square degrees of simulated DES data.
105 - Joseph J. Mohr 2008
The Dark Energy Survey collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the result ing science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at NCSA and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used Teragrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا