ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compar ed in detail to state-of-the-art many-body calculations within the dynamical mean field theory and the three-body scattering approximation, including a full calculation of the one-step photoemission process. From this comparison we conclude that although strong local many-body Coulomb interactions are of major importance for the qualitative description of correlation effects in Co, more sophisticated many-body calculations are needed in order to improve the quantitative agreement between theory and experiment, in particular concerning the linewidths. The quality of the overall agreement obtained for Co indicates that the effect of non-local correlations becomes weaker with increasing atomic number.
The influence of the spin-orbit coupling on the magnetic structure of deposited transition metal nanostructure systems has been studied by fully relativistic electronic structure calculations. The interplay of exchange coupling and magnetic anisotrop y was monitored by studying the corresponding magnetic torque calculated within ab-initio and model approaches. It is found that a spin-orbit induced Dzyaloshinski-Moriya interaction can stabilise a non-collinear spin structure even if there is a pronounced isotropic ferromagnetic exchange interaction between the magnetic atoms.
We present an accurate implementation of total energy calculations into the local density approximation plus dynamical mean-field theory (LDA+DMFT) method. The electronic structure problem is solved through the full potential linear Muffin-Tin Orbita l (FP-LMTO) and Korringa-Kohn-Rostoker (FP-KKR) methods with a perturbative solver for the effective impurity suitable for moderately correlated systems. We have tested the method in detail for the case of Ni and investigated the sensitivity of the results to the computational scheme and to the complete self-consistency. It is demonstrated that the LDA+DMFT method can resolve a long-standing controversy between the LDA/GGA density functional approach and experiment for equilibrium lattice constant and bulk modulus of Mn.
The influence of correlation effects on the orbital moments for transition metals and their alloys is studied by first-principle relativistic Density Functional Theory in combination with the Dynamical Mean-Field Theory. In contrast to the previous s tudies based on the orbital polarization corrections we obtain an improved description of the orbital moments for wide range of studied systems as bulk Fe, Co and Ni, Fe-Co disordered alloys and 3$d$ impurities in Au. The proposed scheme can give simultaneously a correct dynamical description of the spectral function as well as static magnetic properties of correlated disordered metals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا