ترغب بنشر مسار تعليمي؟ اضغط هنا

We characterize the motion of charged as well as neutral tracers, in an electrolyte embedded in a varying section channel. We exploit a set of systematic approximations that allows us to simplify the problem, yet capturing the essential of the interp lay between the geometrical confinement provided by the corrugated channel walls and the electrolyte properties. Our simplified approach allows us to characterize the transport properties of corrugated channels when a net flux of tracers is obtained by keeping the extrema of the channel at different chemical potentials. For highly diluted tracer suspensions, we have characterized tracers currents and we have estimated the net electric current which occurs when both positively and negatively charged tracers are considered.
Near-field heat engines are devices that convert the evanescent thermal field supported by a primary source into usable mechanical energy. By analyzing the thermodynamic performance of three-body near-field heat engines, we demonstrate that the power they supply can be substantially larger than that of two-body systems, showing their strong potential for energy harvesting. Theoretical limits for energy and entropy fluxes in three-body systems are discussed and compared with their corresponding two-body counterparts. Such considerations confirm that the thermodynamic availability in energy-conversion processes driven by three-body photon tunneling can exceed the thermodynamic availability in two-body systems.
We show that the recently postulated non-standard definition of work proportional to force variation rather than to displacement [A. Imparato and L. Peliti, cond-mat arXiv:0706.1134v1] is thermodynamically inconsistent at both microscopic and macrosc opic scales and leads to non-physical results, including free energy changes that depend on arbitrary parameters.
Extensions of statistical mechanics are routinely being used to infer free energies from the work performed over single-molecule nonequilibrium trajectories. A key element of this approach is the ubiquitous expression dW/dt=partial H(x,t)/ partial t which connects the microscopic work W performed by a time-dependent force on the coordinate x with the corresponding Hamiltonian H(x,t) at time t. Here we show that this connection, as pivotal as it is, cannot be used to estimate free energy changes. We discuss the implications of this result for single-molecule experiments and atomistic molecular simulations and point out possible avenues to overcome these limitations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا