ترغب بنشر مسار تعليمي؟ اضغط هنا

53 - A. Mainzer , T. Grav , J. Masiero 2012
Enhancements to the science data processing pipeline of NASAs Wide-field Infrared Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of $>$158,000 minor planets in four infrared wavelengths during the fully cryogenic po rtion of the mission. Following the depletion of its cryogen, NASAs Planetary Science Directorate funded a four month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of $sim$6500 large Main Belt asteroids and 88 NEOs in its 3.4 and 4.6 $mu$m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.
75 - A. Mainzer , T. Grav , J. Masiero 2012
We present the preliminary results of an analysis of the sub-populations within the near-Earth asteroids, including the Atens, Apollos, Amors, and those that are considered potentially hazardous using data from the Wide-field Infrared Survey Explorer (WISE). In order to extrapolate the sample of objects detected by WISE to the greater population, we determined the survey biases for asteroids detected by the projects automated moving object processing system (known as NEOWISE) as a function of diameter, visible albedo, and orbital elements. Using this technique, we are able to place constraints on the number of potentially hazardous asteroids (PHAs) larger than 100 m and find that there are $sim4700pm1450$ such objects. As expected, the Atens, Apollos, and Amors are revealed by WISE to have somewhat different albedo distributions, with the Atens being brighter than the Amors. The cumulative size distributions of the various near-Earth object (NEO) subgroups vary slightly between 100 m and 1 km. A comparison of the observed orbital elements of the various sub-populations of the NEOs with the current best model is shown.
82 - A. Mainzer , T. Grav , J. Masiero 2011
The NEOWISE dataset offers the opportunity to study the variations in albedo for asteroid classification schemes based on visible and near-infrared observations for a large sample of minor planets. We have determined the albedos for nearly 1900 aster oids classified by the Tholen, Bus and Bus-DeMeo taxonomic classification schemes. We find that the S-complex spans a broad range of bright albedos, partially overlapping the low albedo C-complex at small sizes. As expected, the X-complex covers a wide range of albedos. The multi-wavelength infrared coverage provided by NEOWISE allows determination of the reflectivity at 3.4 and 4.6 $mu$m relative to the visible albedo. The direct computation of the reflectivity at 3.4 and 4.6 $mu$m enables a new means of comparing the various taxonomic classes. Although C, B, D and T asteroids all have similarly low visible albedos, the D and T types can be distinguished from the C and B types by examining their relative reflectance at 3.4 and 4.6 $mu$m. All of the albedo distributions are strongly affected by selection biases against small, low albedo objects, as all objects selected for taxonomic classification were chosen according to their visible light brightness. Due to these strong selection biases, we are unable to determine whether or not there are correlations between size, albedo and space weathering. We argue that the current set of classified asteroids makes any such correlations difficult to verify. A sample of taxonomically classified asteroids drawn without significant albedo bias is needed in order to perform such an analysis.
123 - A. Mainzer , T. Grav , J. Masiero 2011
With thermal infrared observations detected by the NEOWISE project, we have measured diameters for 1742 minor planets that were also observed by the Infrared Astronomical Satellite (IRAS). We have compared the diameters and albedo derived by applying a spherical thermal model to the objects detected by NEOWISE and find that they are in generally good agreement with the IRAS values. We have shown that diameters computed from NEOWISE data are often less systematically biased than those found with IRAS. This demonstrates that the NEOWISE dataset can provide accurate physical parameters for the >157,000 minor planets that were detected by NEOWISE.
77 - A. Mainzer , T. Grav , J. Masiero 2011
With the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010), we have observed over 157,000 minor planets (Mainzer et al. 2011). Included in these are a number of near-Earth objects, Main Belt Asteroids, and irregular satellites which have well-measured physical properties via radar, occultation and in situ imaging. We have used these objects to validate models of thermal models using the WISE measurements, as well as the color corrections derived in Wright et al. (2010) for the four WISE bandpasses as a function of effective temperature. We have used 50 objects with diameters measured by radar, occultation or in situ imaging to characterize the systematic errors implicit in using the WISE data with a faceted spherical NEATM model to compute diameters and albedos. By using the previously measured diameters and H magnitudes with a spherical NEATM model, we compute the predicted fluxes after applying the color corrections given in Wright et al. (2010) in the WISE bands and compare them to the measured magnitudes. We find minimum systematic flux errors of 5-10%, yielding minimum relative diameter and albedo errors of ~10% and ~20%, respectively. Visible albedos for the objects are computed and compared to the albedos at 3.4 and 4.6 microns, which contain a mix of reflected sunlight and thermal emission for most asteroids. We derive a linear relationship between subsolar temperature and effective temperature, which allows the color corrections given in Wright et al. (2010) to be used for asteroids by computing only subsolar temperature instead of a faceted thermal model. The thermal models derived in this paper are not intended to supplant previous measurements made using radar or spacecraft imaging; rather, we have used them to characterize the errors that should be expected when computing diameters and albedos of WISE asteroids using a spherical NEATM model.
BZ UMa is a cataclysmic variable star whose specific classification has eluded researchers since its discovery in 1968. It has outburst and spectral properties consistent with both U Gem class dwarf novae and intermediate polars. We present new photo metric and polarimetric measurements of recent outbursts, including the first detected superoutburst of the system. Statistical analysis of these and archival data from outbursts over the past 40 years present a case for BZ UMa as a non-magnetic, U Gem class, SU-UMa subclass dwarf novae.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا